Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/1/10.1063/1.3560851
1.
1.O. Gonzalez, J. H. Maddocks, ”Global curvature, thickness and the ideal shapes of knots,” PNAS 96, 4769 (1999).
http://dx.doi.org/10.1073/pnas.96.9.4769
2.
2.A. Maritan, C. Micheletti, A. Trovato, R. Banavar, ”Optimal shapes of compact strings,” Nature 406, 287 (2000).
http://dx.doi.org/10.1038/35018538
3.
3.A. Stasiak, J. H. Maddocks, ”Mathematics: Best packing in proteins and DNA,” Nature 406, 251 (2000).
http://dx.doi.org/10.1038/35018674
4.
4.S. Przybył, P. Pierański, ”Helical close packings of ideal ropes,” Eur. Phys. J. E 4, 445 (2001).
http://dx.doi.org/10.1007/s101890170099
5.
5.S. Neukirch, G. H.M. van der Heijden, ”Geometry and mechanics of uniform n-plies: from engineering ropes to biological filaments,” Journal of Elasticity 69, 41 (2002).
http://dx.doi.org/10.1023/A:1027390700610
6.
6.K. Olsen, J. Bohr, ”The generic geometry of helices and their close-packed structures,” Theor. Chem. Acc. 125, 207 (2010).
http://dx.doi.org/10.1007/s00214-009-0639-4
7.
7.See discussion of work by S. Przybył in article by P. Pierański, ”In search of ideal knots”, Ideal Knots, pp 2241, Editors A Stasiak, V. Katritch, and L.H. Kauffman, ISBN 981-02-3530-5 (World Scientific, Singapore, 1998).
8.
8.J. R. Banavar, T. X. Hoang, J. H. Maddocks, A. Maritan, C. Poletto, A. Stasiak, ”Structural motifs of biomolecules,” PNAS 104, 17283 (2007).
http://dx.doi.org/10.1073/pnas.0704594104
9.
9.T. Lionnet, S. Joubaud, R. Lavery, D. Bensimon, V. Croquette, ”Wringing out DNA,” Phys. Rev. Lett. 96, 178102 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.178102
10.
10.J. Gore, Z. Bryant, M. Nöllmann, M. U. Le, N. R. Cozzarelli, C. Bustamante, ”DNA overwinds when stretched,” Nature 442, 836 (2006).
http://dx.doi.org/10.1038/nature04974
11.
11.R. S. Mathew-Fenn, R. Das, P. A.B. Harbury, ”Remeasuring the Double Helix,” Science 322, 446 (2008).
http://dx.doi.org/10.1126/science.1158881
12.
12.J. P. Peters and L. J. Maher III, ”DNA curvature and flexibility in vitro and in vivo,” Quarterly Reviews of Biophysics 43, 23 (2010).
http://dx.doi.org/10.1017/S0033583510000077
13.
13.A. Bancaud, N. Conde e Silva, M. Barbi, G. Wagner, J.-F. Allemand, J. Mozziconacci, C. Lavelle, V. Croquette, J.-M. Victor, A. Prunell and J.-L. Viovy, ”Structural plasticity of single chromatin fibers revealed by torsional manipulation,” Nature Structural & Molecular Biology 13, 444 (2006).
http://dx.doi.org/10.1038/nsmb1087
14.
14.A. Celedon, I. M. Nodelman, B. Wildt, R. Dewan, P. Searson, D. Wirtz, G. D. Bowman and S. X. Sun, ”Magnetic tweezers measurement of single molecule torque,” Nano Lett. 9, 1720 (2009).
http://dx.doi.org/10.1021/nl900631w
15.
15.M. Barbi, J. Mozziconacci, J. M. Victor, ”How the chromatin fiber deal with topological constraints,” Phys. Rev. E 71, 031910 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.031910
16.
16.S. P. Williams, B. D. Athey, L. J. Muglia, R. S. Schappe, A. H. Gough, J. P. Langmore, ”Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length,” Biophysical Journal 49, 233 (1986).
http://dx.doi.org/10.1016/S0006-3495(86)83637-2
17.
17.K. J. Baeyens, H. L. De Bondt, S. R. Holbrook, ”Structure of an RNA double helix including uracil-uracil base pairs in an internal loop,” Nature Structural Biology 2, 56 (1995).
http://dx.doi.org/10.1038/nsb0195-56
18.
18.A. Varshavsky, ”Discovering the RNA double helix and hybridization,” Cell 127, 1295 (2006).
http://dx.doi.org/10.1016/j.cell.2006.12.008
19.
19.A. Meglio, E. Praly, F. Ding, J. F. Allemand, D. Bensimon, V. Croquette, ”Single DNA/protein studies with magnetic traps,” Current Opinion in Structural Biology 19, 615 (2009).
http://dx.doi.org/10.1016/j.sbi.2009.08.005
20.
20.M. Y. Sheinin, M. D. Wang, ”Twist-stretch coupling and phase transition during DNA supercoiling,” Phys. Chem. Chem. Phys. 11, 4800 (2009).
http://dx.doi.org/10.1039/b901646e
21.
21.C. C. Bernido, M. V. Carpio-Bernido, ”Overwinding in a stochastic model of an extended polymer,” Physics Letters A 369, 1 (2007).
http://dx.doi.org/10.1016/j.physleta.2007.03.083
22.
22.M. L. Smith, T. J. Healey, ”Predicting the onset of DNA supercoiling using a non-linear hemitropic elastic rod,” Int. Jour. of Non-Linear mechanics 43, 1020 (2008).
http://dx.doi.org/10.1016/j.ijnonlinmec.2008.07.001
23.
23.C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, M. D. Wang, ”Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection,” Nature Methods 4, 223 (2007).
http://dx.doi.org/10.1038/nmeth1013
24.
24.B. K. Gu, M. K. Shin, K. W. Shon, S. I. Kim, S. J. Kim, S. K. Kim, H. Lee, J. S. Park, ”Direct fabrication of twisted nanofibers by electrospinning,” Applied Physics Letters 90, 263902 (2007).
http://dx.doi.org/10.1063/1.2753109
25.
25.J. Liu, X. Zhang, Y. Zhang, X. Chen, J. Zhu, ”Nano-sized double helices and braids: interesting carbon nanostructures,” Materials Research Bulletin 38, 261 (2003).
http://dx.doi.org/10.1016/S0025-5408(02)01035-8
26.
26.J. Michaelis, A. Muschielok, J. Andrecka, W. Kügel, J. R. Moffitt, ”DNA based molecular motors,” Physics of Life Reviews 6, 250266 (2009).
http://dx.doi.org/10.1016/j.plrev.2009.09.001
27.
27.J. Bohr, K. Olsen, ”The close-packed triple helix as a possible new structural motif for collagen,” Theor. Chem. Acc. DOI: 10.1007/s00214-010-0761-3.
http://dx.doi.org/10.1007/s00214-010-0761-3
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/1/10.1063/1.3560851
Loading
/content/aip/journal/adva/1/1/10.1063/1.3560851
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/1/10.1063/1.3560851
2011-03-01
2016-09-26

Abstract

A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends only on the pitch angle. For pitch angles below 39.4° strain leads to further winding, while for larger pitch angles strain leads to unwinding. The zero-twist structure, with a pitch angle of 39.4°, is at the unique point between winding and unwinding and independent of the mechanical properties of the double helix. The existence of zero-twist structures, i.e. structures that display neither winding, nor unwinding under strain is discussed. Close-packed double helices are shown to extend rather than shorten when twisted. Numerical estimates of this elongation upon winding are given for DNA, chromatin, and RNA.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/1/1.3560851.html;jsessionid=tVnQOqdXPOMrlMGqbSvwXRw6.x-aip-live-06?itemId=/content/aip/journal/adva/1/1/10.1063/1.3560851&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/1/10.1063/1.3560851&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/1/10.1063/1.3560851'
Right1,Right2,Right3,