Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/1/10.1063/1.3562541
1.
1. T. Andrews, Philos. Trans. R. Soc. London 159, 575 (1869).
http://dx.doi.org/10.1098/rstl.1869.0021
2.
2. J. D. van Der Waals, Doctoral Dissertation (Leiden, Holland, 1873).
3.
3. A.V. Tatarenko, Chemistry Preprint Archive 9, 68 (2002).
4.
4. A.V. Tatarenko, Mathematics Preprint Archive 11, 317 (2002).
5.
5. T. Poston and I. Stewart, Catastrophe Theory and its Applications, (Pitman, London, 1978), Chap. 14.
6.
6. J. S. Rowlinson and J. D. van Der Waals, On the Continuity of the Gaseous and Liquid States, edited by J. L. Lebowitz, (North Holland, Amsterdam, 1988), Chap. 12 and Chap. 13.
7.
7. D. H. Fowler, in Towards a Theoretical Biology, edited by C. H. Waddington, (Edinburgh University Press, Edinburgh, 19681972), Vol. 1, pp. 17.
8.
8. I. Polischuk, J. Wisniak, and H. Segura, Chemical Engineering Science 55, 5705 (2000).
http://dx.doi.org/10.1016/S0009-2509(00)00219-0
9.
9. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed. (Pergamon, New York, 1980), Chap. XIV.
10.
10. D. Ter Haar and N. H. Wergeland, Elements of Thermodynamics (Addison-Wesley, London, 1966), Appendix B.
11.
11. J. J. Martin and Y. Hou, AIChE Journal 1 (2), 142 (1955).
http://dx.doi.org/10.1002/aic.690010203
12.
12. J. W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802 (1963).
http://dx.doi.org/10.1063/1.1733766
13.
13. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of gases and liquids, (McGraw-Hill, New York, 1977).
14.
14. M. M. Abbot, in Equations of State in Engineering and Research, edited by K. C. Chao and R. L. Robinson (Advances in Chemistry Series 182, Am. Chem. Soc, 1979) pp. 4770.
15.
15. Y. Zhi, S. Meiren, S. Jun and H. Lee, Fluid Phase Equilibria 187-188, 275 (2001).
http://dx.doi.org/10.1016/S0378-3812(01)00542-8
16.
16. V. K. Semenchenko, Dok. Akad. Nauk SSSR 99, 1045 (1954).
17.
17. J. L. Sengers, How fluids unmix. Discoveries by the School of Van der Waals and Kamerling Onnes (Royal Netherlands Academy of Arts and Sciences, Amsterdam, 2002).
18.
18. J. E. Verschaffelt, Archives neerlandaises des sciences exactes et naturelles 6 (2), 650 (1901). See also Ref. 17.
19.
19. B. Widom, J. Chem. Phys. 43, 3898 (1965).
http://dx.doi.org/10.1063/1.1696618
20.
20. A. Z. Patashinskii and V. L. Pokrovskii, Zh. Eksp. Teor. Fiz. 50, 439 (1966).
20.A. Z. Patashinskii and V. L. Pokrovskii, [Sov. Phys. JETP 23, 292].
21.
21. L. P. Kadanoff, Physics (Long Island City, NY) 2, 263 (1966).
22.
22. S. B. Kiselev, Fluid Phase Equilibria 147, 7 (1998).
http://dx.doi.org/10.1016/S0378-3812(98)00222-2
23.
23. A. Kostrowicka Wyczalkowska, M. A. Anisimov, and J. V. Sengers, Fluid Phase Equilibria 158-160, 523 (1999).
http://dx.doi.org/10.1016/S0378-3812(99)00070-9
24.
24. H. M. Paynter, ASME J. Dyn. Syst., Meas., Control 107, 233 (1985).
http://dx.doi.org/10.1115/1.3140727
25.
25. H. E. Stanley, Introduction to Phase Transition and Critical Phenomena (Clarendon, Oxford, 1971).
26.
26. B. C. Eu, J. Chem. Phys. 114, 10899 (2001).
http://dx.doi.org/10.1063/1.1375142
27.
27. V. I. Arnold, Usp. Mat. Nauk 30 (5), 3 (1975).
28.
28. W. Wagner and A. Pruss, J. Phys. Chem. Ref. Data, 31 387535 (2002).
http://dx.doi.org/10.1063/1.1461829
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/1/10.1063/1.3562541
Loading
/content/aip/journal/adva/1/1/10.1063/1.3562541
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/1/10.1063/1.3562541
2011-03-01
2016-09-27

Abstract

The suggested earlier approach based on the equation of state expressed as the equilibrium surface of cuspoid catastrophes has been expanded and developed. The family of equations of state with arbitrary critical point degeneracy has been obtained. In other words, the order of a partial derivative of pressure with respect to volume at the critical point has become an arbitrary assigned variable. This, in turn, has led to more realistic, as compared to the classic case, behaviour of fluid in the immediate vicinity of the critical point. The critical exponents became functions of the degree of critical point degeneracy. By suitable selection of the degree of degeneracy it is possible to obtain the preset values of critical exponents. A simple nonanalytic equation of state has been obtained. This equation allows us to describe some non-classical phenomena in the vicinity of critical point liquid-gas without using scaling. The same equation holds in the ideal gas area without using crossover. One more implication arising from the suggested approach is a singularity in the equations of state – endpoint of gas-liquid equilibrium at low pressures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/1/1.3562541.html;jsessionid=dFCjLhAltBxxXKu_YX0WGOK4.x-aip-live-03?itemId=/content/aip/journal/adva/1/1/10.1063/1.3562541&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/1/10.1063/1.3562541&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/1/10.1063/1.3562541'
Right1,Right2,Right3,