Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/2/10.1063/1.3580260
1.
1. F. Dobrich, M. Elmas, A. Ferdinard, J. Markmann, M. Sharp, H. Eckerlebe, J. Kohlbrecher, R. Birringer, and A. Michels, J. Phys.: Condens. Matter, 21, 156003 (2009).
http://dx.doi.org/10.1088/0953-8984/21/15/156003
2.
2. R. Kruk, M. Ghafari, H. Hahn, D. Michels, R. Birringer, C. E. Krill III, R. Kmiec, M. Marszalek, Phys. Rev. B 73, 054420 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.054420
3.
3. S. Philippi, J. Markmann, R. Birringer, and A. Michels, J. Appl. Phys. 105, 07A701 (2009).
http://dx.doi.org/10.1063/1.3055342
4.
4. D. Johnson, P. Perera, and M. O’Shea, J. Appl. Phys. 79, 5299 (1996).
http://dx.doi.org/10.1063/1.361357
5.
5. N. B. Shevchenko, J. A. Christodoulides, and G. C. Hadjipanayis, Appl. Phys. Lett., 74, 1478 (1999).
http://dx.doi.org/10.1063/1.123586
6.
6. J. Weissmüller, D. Michels, A. Michels, C. E. Krill, A. Wiedenmann, and N. S. Gajbhiye, Phys. Stat. Sol., 189, 495 (2002).
http://dx.doi.org/10.1002/1521-396X(200202)189:2<495::AID-PSSA495>3.0.CO;2-X
7.
7. J. Weissmüller, A. Michels, D. Michels, A. Wiedenmann, C. E. Krill III, H. M. Sauer, R. Birringer, Phys. Rev. B 69, 054402 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.054402
8.
8. M. O’Shea and P. Perera, J. Appl. Phys. 85, 4322 (1999).
http://dx.doi.org/10.1063/1.370356
9.
9. M. Yue, J. X. Zhang, H. Zeng, and K. J. Wang, Appl. Phys. Lett. 89, 232504 (2006).
http://dx.doi.org/10.1063/1.2400079
10.
10. M. Yue, K. J. Wang, W. Q. Liu, D. T. Zhang, and J. X. Zhang, Appl. Phys. Lett. 93, 202501 (2008).
http://dx.doi.org/10.1063/1.3003863
11.
11. S. Legvold, F. H. Spedding, F. Barson, and J. F. Elliott, Revs. Modern Phys. 25, 129 (1953).
http://dx.doi.org/10.1103/RevModPhys.25.129
12.
12. J. R. Banister, S. Legvold, and F. H. Spedding, Phys. Rev. 94, 1140 (1954).
http://dx.doi.org/10.1103/PhysRev.94.1140
13.
13. W. C. Koehler and E. O. Wollan, Phys. Rev. 97, 1177 (1955).
http://dx.doi.org/10.1103/PhysRev.97.1177
14.
14. J. F. Elliott, S. Legvold, and F. H. Spedding, Phys. Rev. 100, 1595 (1955).
http://dx.doi.org/10.1103/PhysRev.100.1595
15.
15. R. W. Green, S. Legvold, and F. H. Spedding, Phys. Rev. 122, 827 (1961).
http://dx.doi.org/10.1103/PhysRev.122.827
16.
16. F. J. Darnell, Phys. Rev. 132, 1098 (1963).
http://dx.doi.org/10.1103/PhysRev.132.1098
17.
17. J. J. Rhyne, S. Foner, E. J. Mcniff, Jr., and R. Doclo, J. Appl. Phys. 39, 892 (1968).
http://dx.doi.org/10.1063/1.1656324
18.
18. J. W. Cable, E. O. Wollan, W. C. Koehler, and W. K. Wilkinson, J. Appl. Phys. 32, 49S (1961).
http://dx.doi.org/10.1063/1.2000494
19.
19. J. A. Cowen, B. Stolzman, R. S. Averback, and H. Hahn, J. Appl. Phys. 61, 3317 (1987).
http://dx.doi.org/10.1063/1.338894
20.
20. X. Y. Song, J. X. Zhang, M. Yue, E. D. Li, H. Zeng, N. D. Lu, M. L. Zhou, and T. Y. Zuo, Adv. Mater. 18, 1210 (2006).
http://dx.doi.org/10.1002/adma.200502619
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3580260
Loading
/content/aip/journal/adva/1/2/10.1063/1.3580260
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3580260
2011-04-07
2016-12-11

Abstract

Bulk nanocrystalline Erbium metals were prepared via Spark Plasma Sintering (SPS) and subsequent annealing process. The nanocrystalline Er metals have the same hexagonal close packed structure as that of coarse-grained sample. Decrease in grain size results in remarkable changes in the three magnetic orderingtemperatures of the nanocrystalline Er metal. At 5 K, the magnetization drops by 10.9%, while the coercivity increases by 4 times for nanocrystalline Er compared with those of coarse-grained sample. These results indicate the remarkable influence of the nanostructure on the magnetism of Er due to finite size effect.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3580260.html;jsessionid=6pqLwT7gLPfnGcnuNQRivEa6.x-aip-live-02?itemId=/content/aip/journal/adva/1/2/10.1063/1.3580260&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/2/10.1063/1.3580260&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/2/10.1063/1.3580260'
Right1,Right2,Right3,