Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, and W. Honlein, Microelectronic Engineering, 64, 399 (2002).
2.J. Li, Q. Ye, A. M. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, Appl. Phys. Lett., 82, 2491 (2003).
3.M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, and Y. Awano, Jpn. J. Appl. Phys., Part 1 44, 1626 (2005).
4.L. Zhang, D. Austin, V. I. Merkulov, A. V. Meleshko, K. L. Klein, M. A. Guillorn, D. H. Lowndes and M. L. Simpson, Appl. Phys. Lett., 84, 3972 (2004).
5.A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, J. Appl. Phys., 97, 041301 (2005).
6.Q. Ngo, T. Yamada, M. Suzuki, Y. Ominami, A. M. Cassell, J. Li, M. Meyyappan, and C. Y. Yang, IEEE Trans. Nanotech., 6, 688 (2007).
7.H. Kitsuki, T. Yamada, D. Fabris, J. R. Jameson, P. Wilhite, M. Suzuki, and C. Y. Yang, Appl. Phys. Lett., 92, 173110 (2008).
8.T. Saito, T. Yamada, D. Fabris, H. Kitsuki, P. Wilhite, M. Suzuki, and C. Y. Yang, Appl. Phys. Lett., 93, 102108 (2008).
9.T. Yamada, T. Saito, D. Fabris, and C. Y. Yang, IEEE Elec. Dev. Lett., 30, 469 (2009).
10.T. Yamada, H. Yabutani, T. Saito, and C. Y. Yang, Nanotechnology, 21, 26707 (2010).
11.B. A. Cruden, A. M. Cassell, Q. Ye, and M. Meyyappan, J. Appl. Phys., 94, 4070 (2003).
12.P. D. Rack, J. D. Fowlkes, and S. J. Randolph, Nanotechnology, 18, 465601 (2007).
13.S. J. Randolph, J. D. Fowlkes, and P. D. Rack, Crit. Rev. Solid State Mater. Sci., 31, 55 (2006).
14.T. Yamada, T. Saito, M. Suzuki, P. Wilhite, X. Sun, N. Akhavantafti, D. Fabris, and C. Y. Yang, J. Appl. Phys., 107, 044304 (2010).
15.P. G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris, Phys. Rev. Lett., 86, 3128 (2001).
16.G. U. Sumanasekera, C. K.W Adu, S. Fang and P. C. Eklund, Phys. Rev. Lett., 85 1096 (2000).
17.A. Zahab, L. Spina, and P. Poncharal, Phys. Rev. B, 62, 10000 (2001)
18.S. G. Wang, Q. Zhang, D. J. Yanga, P. J. Sellin and G. F. Zhong, Diamond and Related Materials, 13, 1327 (2004).
19.K. G. Ong, K. Zeng, and C. A. Grime, IEEE Sensors J., 2, 2 (2002).
20.C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. M. Kenny and S. Santucci, Sensors and Actuators B, 93, 333 (2003).
21.T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett., 4, 35 (2004).

Data & Media loading...


Article metrics loading...



The electrical properties of carbon nanofibers (CNFs) can be affected by adsorbed gas species. In this study, we compare the resistance values of CNF devices in a horizontal configuration in air and under vacuum. CNFs in air are observed to possess lower current capacities compared to those in vacuum. Further, Joule heating due to current stressing can result in desorption of gas molecules responsible for carrier trapping, leading to lower resistances and higher breakdown currents in vacuum, where most adsorbed gaseous species are evacuated before any significant re-adsorption can occur. A model is proposed to describe these observations, and is used to estimate the number of adsorbed molecules on a CNF device.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd