1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Change in carbon nanofiber resistance from ambient to vacuum
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3582812
1.
1.F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, and W. Honlein, Microelectronic Engineering, 64, 399 (2002).
http://dx.doi.org/10.1016/S0167-9317(02)00814-6
2.
2.J. Li, Q. Ye, A. M. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, Appl. Phys. Lett., 82, 2491 (2003).
http://dx.doi.org/10.1063/1.1566791
3.
3.M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, and Y. Awano, Jpn. J. Appl. Phys., Part 1 44, 1626 (2005).
http://dx.doi.org/10.1143/JJAP.44.1626
4.
4.L. Zhang, D. Austin, V. I. Merkulov, A. V. Meleshko, K. L. Klein, M. A. Guillorn, D. H. Lowndes and M. L. Simpson, Appl. Phys. Lett., 84, 3972 (2004).
http://dx.doi.org/10.1063/1.1748849
5.
5.A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, J. Appl. Phys., 97, 041301 (2005).
http://dx.doi.org/10.1063/1.1857591
6.
6.Q. Ngo, T. Yamada, M. Suzuki, Y. Ominami, A. M. Cassell, J. Li, M. Meyyappan, and C. Y. Yang, IEEE Trans. Nanotech., 6, 688 (2007).
http://dx.doi.org/10.1109/TNANO.2007.907400
7.
7.H. Kitsuki, T. Yamada, D. Fabris, J. R. Jameson, P. Wilhite, M. Suzuki, and C. Y. Yang, Appl. Phys. Lett., 92, 173110 (2008).
http://dx.doi.org/10.1063/1.2918839
8.
8.T. Saito, T. Yamada, D. Fabris, H. Kitsuki, P. Wilhite, M. Suzuki, and C. Y. Yang, Appl. Phys. Lett., 93, 102108 (2008).
http://dx.doi.org/10.1063/1.2979710
9.
9.T. Yamada, T. Saito, D. Fabris, and C. Y. Yang, IEEE Elec. Dev. Lett., 30, 469 (2009).
http://dx.doi.org/10.1109/LED.2009.2016361
10.
10.T. Yamada, H. Yabutani, T. Saito, and C. Y. Yang, Nanotechnology, 21, 26707 (2010).
http://dx.doi.org/10.1088/0957-4484/21/26/265707
11.
11.B. A. Cruden, A. M. Cassell, Q. Ye, and M. Meyyappan, J. Appl. Phys., 94, 4070 (2003).
http://dx.doi.org/10.1063/1.1601293
12.
12.P. D. Rack, J. D. Fowlkes, and S. J. Randolph, Nanotechnology, 18, 465601 (2007).
http://dx.doi.org/10.1088/0957-4484/18/46/465602
13.
13.S. J. Randolph, J. D. Fowlkes, and P. D. Rack, Crit. Rev. Solid State Mater. Sci., 31, 55 (2006).
http://dx.doi.org/10.1080/10408430600930438
14.
14.T. Yamada, T. Saito, M. Suzuki, P. Wilhite, X. Sun, N. Akhavantafti, D. Fabris, and C. Y. Yang, J. Appl. Phys., 107, 044304 (2010).
http://dx.doi.org/10.1063/1.3295901
15.
15.P. G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris, Phys. Rev. Lett., 86, 3128 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3128
16.
16.G. U. Sumanasekera, C. K.W Adu, S. Fang and P. C. Eklund, Phys. Rev. Lett., 85 1096 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1096
17.
17.A. Zahab, L. Spina, and P. Poncharal, Phys. Rev. B, 62, 10000 (2001)
http://dx.doi.org/10.1103/PhysRevB.62.10000
18.
18.S. G. Wang, Q. Zhang, D. J. Yanga, P. J. Sellin and G. F. Zhong, Diamond and Related Materials, 13, 1327 (2004).
http://dx.doi.org/10.1016/j.diamond.2003.11.070
19.
19.K. G. Ong, K. Zeng, and C. A. Grime, IEEE Sensors J., 2, 2 (2002).
http://dx.doi.org/10.1109/7361.987055
20.
20.C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. M. Kenny and S. Santucci, Sensors and Actuators B, 93, 333 (2003).
http://dx.doi.org/10.1016/S0925-4005(03)00224-7
21.
21.T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, Nano Lett., 4, 35 (2004).
http://dx.doi.org/10.1021/nl034841q
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582812
Loading
/content/aip/journal/adva/1/2/10.1063/1.3582812
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3582812
2011-04-14
2014-12-20

Abstract

The electrical properties of carbon nanofibers (CNFs) can be affected by adsorbed gas species. In this study, we compare the resistance values of CNF devices in a horizontal configuration in air and under vacuum. CNFs in air are observed to possess lower current capacities compared to those in vacuum. Further, Joule heating due to current stressing can result in desorption of gas molecules responsible for carrier trapping, leading to lower resistances and higher breakdown currents in vacuum, where most adsorbed gaseous species are evacuated before any significant re-adsorption can occur. A model is proposed to describe these observations, and is used to estimate the number of adsorbed molecules on a CNF device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3582812.html;jsessionid=dplakjkq2nh8.x-aip-live-06?itemId=/content/aip/journal/adva/1/2/10.1063/1.3582812&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Change in carbon nanofiber resistance from ambient to vacuum
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582812
10.1063/1.3582812
SEARCH_EXPAND_ITEM