1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Fabrication of Li-intercalated bilayer graphene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3582814
1.
1. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).
http://dx.doi.org/10.1080/00018730110113644
2.
2. J. R. Dahn, A. K. Sleigh, H. Shi, B. M. Way, W. J. Weydanz, J. N. Reimers, Q. Zhong and U. V. Sacken, Carbons and Graphite as Substitutes for the Lithium Anode, Industrial Chemistry Library 5, 1 (1994).
3.
3. J. R. Dahn, T. Zheng, Y. H. Liu, and J. S. Xue, Science 270, 590 (1995).
http://dx.doi.org/10.1126/science.270.5236.590
4.
4. J. -M. Trascon and M. Armond, Nature 414, 359 (2001).
http://dx.doi.org/10.1038/35104644
5.
5. A. S. Aricó, P. Bruce, B. Scrosati, J. -M. Tarascon, and W. V. Schalkwijk, Nature Mater. 4, 366 (2005).
http://dx.doi.org/10.1038/nmat1368
6.
6. Th. Fauster, F. J. Himpsel, J. E. Fischer, and E. W. Plummer, Phys. Rev. Lett. 51, 430 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.430
7.
7. G. K. Wertheim, P. M. Th. M. Van Attekum, and S. Basu, Solid State Commu. 33, 1127 (1980).
http://dx.doi.org/10.1016/0038-1098(80)91089-3
8.
8. W. Eberhardt, I. T. McGovern, E. W. Plummer, and J. E. Fisher, Phys. Rev. Lett. 44, 200 (1980).
http://dx.doi.org/10.1103/PhysRevLett.44.200
9.
9. N. Gunasekara, T. Takahashi, F. Maeda, T. Sagawa, and H. Suematsu, Z. Phys. B 70, 349 (1988).
http://dx.doi.org/10.1007/BF01317241
10.
10. N. A. W. Holzwarth, S. Rabii, and L. A. Girifalco, Phys. Rev. B 18, 5190 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.5190
11.
11. N. A. W. Holzwarth, S. G. Louie, and S. Rabii, Phys. Rev. B 30, 2219 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.2219
12.
12. C. Hartwigsen, W. Witschel, and E. Spohr, Phys. Rev. B 55, 4953 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.4953
13.
13. G. Csányi, P. B. Littlewood, A. H. Nevidomskyy, C. J. Pickard, and B. D. Simons, Nature Phys. 1, 42 (2005).
http://dx.doi.org/10.1038/nphys119
14.
14. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Mater. 8, 203 (2009).
http://dx.doi.org/10.1038/nmat2382
15.
15. I. Forbeaux, J.-M. Themlin, and J.-M. Debever, Phys. Rev. B 58, 16396 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.16396
16.
16. W. Chen, H. Xu, L. Liu, X. Gao, D. Qi, G. Peng, S. C. Tan, Y. Feng, K. P. Loh, A. T. S. Wee, Surf. Sci. 596, 176 (2005).
http://dx.doi.org/10.1016/j.susc.2005.09.013
17.
17. Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, and Z. X. Shen, Phys. Rev. B 77, 115416 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115416
18.
18. K. Sugawara, T. Sato, and T. Takahashi, Nature Phys. 5, 40 (2009).
http://dx.doi.org/10.1038/nphys1128
19.
19. S. L. Molodtsov, C. Laubschat, M. Richter, Th. Gantz, and A. M. Shikin, Phys. Rev. B 53, 16621 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.16621
20.
20. S. L. Molodtsov, F. Schiller, S. Danzenbächer, M. Richter, C. Laubschat, and M. C. Asensio, Phys. Rev. B 67, 115105 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.115105
21.
21. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 95 (2006).
http://dx.doi.org/10.1126/science.1130681
22.
22. I. I. Mazin and A. V. Balatsky, Phil. Mag. Lett. 90, 731 (2010).
http://dx.doi.org/10.1080/09500839.2010.487473
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582814
Loading
/content/aip/journal/adva/1/2/10.1063/1.3582814
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3582814
2011-04-14
2014-07-22

Abstract

We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp × 30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk CLi. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3582814.html;jsessionid=2nf993bhsmyw5.x-aip-live-06?itemId=/content/aip/journal/adva/1/2/10.1063/1.3582814&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Fabrication of Li-intercalated bilayer graphene
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582814
10.1063/1.3582814
SEARCH_EXPAND_ITEM