Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).
2. J. R. Dahn, A. K. Sleigh, H. Shi, B. M. Way, W. J. Weydanz, J. N. Reimers, Q. Zhong and U. V. Sacken, Carbons and Graphite as Substitutes for the Lithium Anode, Industrial Chemistry Library 5, 1 (1994).
3. J. R. Dahn, T. Zheng, Y. H. Liu, and J. S. Xue, Science 270, 590 (1995).
4. J. -M. Trascon and M. Armond, Nature 414, 359 (2001).
5. A. S. Aricó, P. Bruce, B. Scrosati, J. -M. Tarascon, and W. V. Schalkwijk, Nature Mater. 4, 366 (2005).
6. Th. Fauster, F. J. Himpsel, J. E. Fischer, and E. W. Plummer, Phys. Rev. Lett. 51, 430 (1983).
7. G. K. Wertheim, P. M. Th. M. Van Attekum, and S. Basu, Solid State Commu. 33, 1127 (1980).
8. W. Eberhardt, I. T. McGovern, E. W. Plummer, and J. E. Fisher, Phys. Rev. Lett. 44, 200 (1980).
9. N. Gunasekara, T. Takahashi, F. Maeda, T. Sagawa, and H. Suematsu, Z. Phys. B 70, 349 (1988).
10. N. A. W. Holzwarth, S. Rabii, and L. A. Girifalco, Phys. Rev. B 18, 5190 (1978).
11. N. A. W. Holzwarth, S. G. Louie, and S. Rabii, Phys. Rev. B 30, 2219 (1984).
12. C. Hartwigsen, W. Witschel, and E. Spohr, Phys. Rev. B 55, 4953 (1997).
13. G. Csányi, P. B. Littlewood, A. H. Nevidomskyy, C. J. Pickard, and B. D. Simons, Nature Phys. 1, 42 (2005).
14. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Mater. 8, 203 (2009).
15. I. Forbeaux, J.-M. Themlin, and J.-M. Debever, Phys. Rev. B 58, 16396 (1998).
16. W. Chen, H. Xu, L. Liu, X. Gao, D. Qi, G. Peng, S. C. Tan, Y. Feng, K. P. Loh, A. T. S. Wee, Surf. Sci. 596, 176 (2005).
17. Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, and Z. X. Shen, Phys. Rev. B 77, 115416 (2008).
18. K. Sugawara, T. Sato, and T. Takahashi, Nature Phys. 5, 40 (2009).
19. S. L. Molodtsov, C. Laubschat, M. Richter, Th. Gantz, and A. M. Shikin, Phys. Rev. B 53, 16621 (1996).
20. S. L. Molodtsov, F. Schiller, S. Danzenbächer, M. Richter, C. Laubschat, and M. C. Asensio, Phys. Rev. B 67, 115105 (2003).
21. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 95 (2006).
22. I. I. Mazin and A. V. Balatsky, Phil. Mag. Lett. 90, 731 (2010).

Data & Media loading...


Article metrics loading...



We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp × 30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk CLi. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd