1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Determination of the decay exponent in mechanically stirred isotropic turbulence
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3582815
1.
1. J. B. Perot, “Turbulence modeling using body force potentials,” Phys. Fluids 11 (9), 26452656 (1999).
http://dx.doi.org/10.1063/1.870126
2.
2. J. B. Perot, S. Natu, “A model for the dissipation tensor in inhomogeneous and anisotropic turbulence,” Phys. Fluids. 16 (11), 40534065 (2004).
http://dx.doi.org/10.1063/1.1801392
3.
3. L. Djenidi, “Lattice Boltzmann simulation of grid generated turbulence,” J. Fluid Mech. 552, 1335 (2006).
http://dx.doi.org/10.1017/S002211200600869X
4.
4. T. Kurian, J. H. M. Fransson, “Grid-generated turbulence revisited,” Fluid Dynamics Research 41 (2), 021403 (2009).
http://dx.doi.org/10.1088/0169-5983/41/2/021403
5.
5. T. von Karman, L. Howarth, “On the statistical theory of isotropic turbulence,” Proc. R. Soc. Lond. A 164, 192215 (1938).
http://dx.doi.org/10.1098/rspa.1938.0013
6.
6. A. N. Kolmogorov, “On degeneration of isotropic turbulence in an incompressible viscous liquid,” Dokl. Akad. Nauk. SSSR 31, 538 (1941).
7.
7. P. G. SaffmanNote on decay of homogeneous turbulence,” Phys. Fluids 10, 1349 (1967).
http://dx.doi.org/10.1063/1.1762284
8.
8. W. K. George, “The decay of homogeneous isotropic turbulence,” Phys. Fluids A 4 (7), 14921509 (1992).
http://dx.doi.org/10.1063/1.858423
9.
9. C. G. Speziale, P. S. Bernard, “The energy decay in self preserving isotropic turbulence revisited,” J. Fluid Mech. 241, 645667 (1992).
http://dx.doi.org/10.1017/S0022112092002180
10.
10. G. K. Batchelor, A. A. Townsend, “Decay of turbulence in the final period,” Proc. R. Soc. A 194, 527543 (1948).
http://dx.doi.org/10.1098/rspa.1948.0095
11.
11. B. Launder, B. Sharma, “Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc,” Lett. Heat and Mass transfer 1, 131138 (1974).
12.
12. C. K. G. Lam, K. Bremhorst, “A modified form of the k-e model for predicting wall turbulence,” ASME Journal Fluid Engineering 103, 456 (1981).
http://dx.doi.org/10.1115/1.3240815
13.
13. M. K. Chung, S. K. Kim, “A nonlinear return-to-isotropy model with Reynolds number and anisotropy dependency,” Phys. Fluids 7 (6), 14251437 (1995).
http://dx.doi.org/10.1063/1.868760
14.
14. G. K. Batchelor, A. A. Townsend, “Decay of isotropic turbulence in the initial period,” Proc. R. Soc. A 193, 539558 (1948).
http://dx.doi.org/10.1098/rspa.1948.0061
15.
15. M. Oberlack, “On the decay exponent of isotropic turbulence,” Proc. Appl. Math. Mech. 1, 294297 (2002).
http://dx.doi.org/10.1002/1617-7061(200203)1:1<294::AID-PAMM294>3.0.CO;2-W
16.
16. P. Burattini, P. Lavoie, A. Agrawal, L. Djenidi, R. A. Antonia, “Power law of decaying homogeneous isotropic turbulence at low Reynolds number,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 73 (6), 066304 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.066304
17.
17. J. R. Chasnov, “Computation of the Loitsianski integral in decaying isotropic turbulence,” Physics of Fluids 5, 25792581 (1993).
http://dx.doi.org/10.1063/1.858773
18.
18. M. Lesieur, Turbulence in Fluids, (Martinus Nijhoff Pulishers, Dordrecht, Netherlands, 130135, 1987).
19.
19. P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers, (Oxford University Press, ISBN 019852949, 2004).
20.
20. T. Ishida, P. A. Davidson, Y. Kaneda, “On the decay of isotropic turbulence,” Journal of Fluid Mechanics 564, 455475 (2006).
http://dx.doi.org/10.1017/S0022112006001625
21.
21. S. R. Stalp, L. Skrbek, R. J. Donnelly, “Decay of grid turbulence in a finite channel,” Physical Review Letters 82 (24), 48314834 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4831
22.
22. H. Touil, J.-P. Bertoglio, L. Shao, “The decay of turbulence in a bounded domain,” J. Turbulence, 3, 049 (2002).
http://dx.doi.org/10.1088/1468-5248/3/1/049
23.
23. W. Hwang, J. K. Eaton, “Creating homogeneous and isotropic turbulence without a mean flow,” Experiments in Fluids 36 (3), 444454 (2004).
http://dx.doi.org/10.1007/s00348-003-0742-6
24.
24. J. C. Bennett, S. Corrsin, “Small Reynolds number nearly isotropic turbulence in a straight duct and a contraction,” Phys. Fluids 21, 21292140 (1978).
http://dx.doi.org/10.1063/1.862168
25.
25. H. S. Tan, S. C. Ling, “Final stage decay of grid-produced turbulence,” Phys. Fluids 6 (12), 16931699 (1963).
http://dx.doi.org/10.1063/1.1711011
26.
26. L. Skrbek, S. R. Stalp, “On the decay of homogeneous isotropic turbulence,” Phys. Fluids, 12 (8), 19972019 (2000).
http://dx.doi.org/10.1063/1.870447
27.
27. L. Agostini, J. Bass, “Les théories de la turbulence,” Publ. Sci. Tech. Ministere de Air, Paris 237, MR, 11, 751 (1950).
28.
28. J. B. Perot, P. Moin, “Shear-free turbulent boundary layers, Part II: New concepts for Reynolds stress transport equation modeling of inhomogeneous flows,” J. Fluid Mech. 295. 229245 (1995).
http://dx.doi.org/10.1017/S0022112095001947
29.
29. H. Le, P. Moin, J. Kim, “Direct numerical simulation of turbulent flow over a backward step,” J. of Fluid Mech. 330, 349374 (1997).
http://dx.doi.org/10.1017/S0022112096003941
30.
30. J. B. Perot, V. Subramanian, “Discrete calculus methods for diffusion,” J. Comput. Phys. 224 (1), 5981 (2007).
http://dx.doi.org/10.1016/j.jcp.2006.12.022
31.
31. J. B. PerotConservation properties of unstructured staggered mesh schemes,” Journal of Computational Physics 159 (1), 5889 (2000).
http://dx.doi.org/10.1006/jcph.2000.6424
32.
32. V. Subramanian, J. B. Perot, “Higher-Order Mimetic Methods for Unstructured Meshes,” J. Comput. Phys. 219 (1), 6885 (2006).
http://dx.doi.org/10.1016/j.jcp.2006.03.028
33.
33. J. B. Perot, J. Gadebusch, “A stress transport equation model for simulating turbulence at any mesh resolution,” Theoretical and Computational Fluid Dynamics. 23 (4), 271286 (2009).
http://dx.doi.org/10.1007/s00162-009-0113-x
34.
34. J. B. Perot, “An analysis of the fractional step method,” J. Comput. Phys. 108 (1), 183199 (1993).
http://dx.doi.org/10.1006/jcph.1993.1162
35.
35. W. Chang, F. Giraldo, J. B. Perot, “Analysis of an exact fractional step method,” J. Comput. Phys. 179, 117 (2002).
http://dx.doi.org/10.1006/jcph.2002.7010
36.
36. G. Comte-Bellot, S. Corrsin, “Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated isotropic turbulence,” J. Fluid Mech. 48, 273337 (1971).
http://dx.doi.org/10.1017/S0022112071001599
37.
37. A. Wray, Unpublished data found at ftp://torroja.dmt.upm.es/AGARD/chapter3/HOM02/. (1997).
38.
38. S. M. de Bruyn Kops, J. J. Riley, “Direct numerical simulation of laboratory experiments in isotropic turbulence,” Phys. Fluids 10 (9), 21252127 (1998).
http://dx.doi.org/10.1063/1.869733
39.
39. K. R. Sreenivasan, R. A. Antonia, “The phenomenology of small-scale turbulence,” Annual Rev. Fluid Mech. 29, 435472 (1997).
http://dx.doi.org/10.1146/annurev.fluid.29.1.435
40.
40. S. Menon, J. B. Perot, “Implementation of an efficient conjugate gradient algorithm for Poisson solutions on graphics processors,” (Proceedings of the 2007 Meeting of the Canadian CFD Society, Toronto Canada, June, 2007)
41.
41. M.-J. Huang, A. Leonard, “Power-law decay of homogeneous turbulence at low Reynolds numbers,” Phys. Fluids 6 (11), 37653775 (1994).
http://dx.doi.org/10.1063/1.868366
42.
42. N. N. Mansour, A. A. Wray, “Decay of isotropic turbulence at low Reynolds number,” Phys. Fluids 6 (2), 808814 (1994).
http://dx.doi.org/10.1063/1.868319
43.
43. J. R. Chasnov, “Decaying turbulence in two and three dimensions,” (Advances in DNS/LES, Greyden Press, Columbus, Ohio, 1997)
44.
44. P. Lavoie, P. Burattini, L. Djenidi, R. A. Antonia, “Effect of initial conditions on decaying grid turbulence at low Re,” Experiments in Fluids 39 (5), 865874 (2005).
http://dx.doi.org/10.1007/s00348-005-0022-8
45.
45. J. B. Perot, S. de Bruyn Kops, “Modeling turbulent dissipation at low and moderate Reynolds numbers,” Journal of Turbulence 7 (69), 114 (2006).
http://dx.doi.org/10.1080/14685240600907310
46.
46. C. Wang, J. B. Perot, “Prediction of turbulent transition in boundary layers using the turbulent potential model,” Journal of Turbulence 3, 022 (2002).
http://dx.doi.org/10.1088/1468-5248/3/1/022
47.
47. J. B. Perot, C. Chartrand, “Modeling return to isotropy using kinetic equations,” Phys. Fluids 17 (3), 035101 (2005).
http://dx.doi.org/10.1063/1.1839153
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582815
Loading
/content/aip/journal/adva/1/2/10.1063/1.3582815
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3582815
2011-04-14
2014-10-23

Abstract

Direct numerical simulation is used to investigate the decay exponent of isotropic homogeneous turbulence over a range of Reynolds numbers sufficient to display both high and low Re number decay behavior. The initial turbulence is generated by the stirring action of the flow past many small randomly placed cubes. Stirring occurs at 1/30th of the simulation domain size so that the low-wavenumber and large scale behavior of the turbulent spectrum is generated by the fluid and is not imposed. It is shown that the decay exponent in the resulting turbulence matches the theoretical predictions for a k2 low-wavenumber spectrum at both high and low Reynolds numbers. The transition from high Reynolds number behavior to low Reynolds number behavior occurs relatively abruptly at a turbulentReynolds number of around 250 ().

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3582815.html;jsessionid=32s21o75h2bt0.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3582815&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Determination of the decay exponent in mechanically stirred isotropic turbulence
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582815
10.1063/1.3582815
SEARCH_EXPAND_ITEM