1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Nitrogen is a deep acceptor in ZnO
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3582819
1.
1. Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z.-Q. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
http://dx.doi.org/10.1063/1.368595
2.
2. M. D. McCluskey and S. J. Jokela, J. Appl. Phys. 106, 071101 (2009).
http://dx.doi.org/10.1063/1.3216464
3.
3. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1453
4.
4. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
http://dx.doi.org/10.1063/1.1504875
5.
5. P. Fons, H. Tampo, A. V. Kolobov, M. Ohkubo, S. Niki, J. Tominaga, R. Carboni, F. Boscherini, and S. Friedrich, Phys. Rev. Lett. 96, 045504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.045504
6.
6. K. Thonke, T. Gruber, N. Teofilov, R. Schnfelder, A. Waag, and R. Sauer, Physica B 308–310, 945 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00877-8
7.
7. A. Zeuner, H. Alves, D. M. Hoffman, B. K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg and M. Dworzak, Phys. Status Solidi B 234, R7 (2002).
http://dx.doi.org/10.1002/1521-3951(200212)234:33.0.CO;2-D
8.
8. L. Wang and N. C. Giles, Appl. Phys. Lett. 84, 3049 (2004).
http://dx.doi.org/10.1063/1.1711162
9.
9. A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B 28, 946 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.946
10.
10. C. H. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073202
11.
11. J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 95, 252105 (2009).
http://dx.doi.org/10.1063/1.3274043
12.
12. S. J. Jokela, M. C. Tarun, and M. D. McCluskey, Physica B 404, 4801 (2009).
http://dx.doi.org/10.1016/j.physb.2009.08.238
13.
13. S. J. Jokela and M. D. McCluskey, J. Appl. Phys. 107, 113536 (2010).
http://dx.doi.org/10.1063/1.3443457
14.
14. G. A. Shi, M. Saboktakin, M. Stavola, and S. J. Pearton, Appl. Phys. Lett. 85, 5601 (2004).
http://dx.doi.org/10.1063/1.1832736
15.
15. V. Iota and B. A. Weinstein, Phys. Stat. Sol. B 211, 91 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3951(199901)211:1<91::AID-PSSB91>3.0.CO;2-M
16.
16. N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds, and D. C. Look, Appl. Phys. Lett. 80, 1334 (2002).
http://dx.doi.org/10.1063/1.1450041
17.
17. W. E. Carlos, E. R. Glaser, and D. C. Look, Physica B 308-310, 976 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00850-X
18.
18. Diode pumped solid state laser, wavelength 473 nm, peak power < 500 mW.
19.
19. D. V. Lang and R. A. Logan, Phys. Rev. Lett. 39, 635 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.635
20.
20. L. E. Halliburton, N. C. Giles, N. Y. Garces, Ming Luo. Chunchuan Xu, Lihai Bai, and L. A. Boatner, Appl. Phys. Lett. 87, 172108 (2005).
http://dx.doi.org/10.1063/1.2117630
22.
22. J. Han, T. S. Stavrinides, M. Kobayashi, R. L. Gunshor, M. M. Hagerott, and N. V. Nurmikko, Appl. Phys. Lett. 62, 840 (1993).
http://dx.doi.org/10.1063/1.108568
23.
23. R. M. Park, M. B. Troffer, C. M. Rouleau, J. M. DePuydt, and M. A. Haase, Appl. Phys. Lett. 57, 2127 (1990).
http://dx.doi.org/10.1063/1.103919
24.
24. L. Svob, C. Thiandoume, A. Lusson, M. Bouanani, Y. Marfaing, and O. Gorochov, Appl. Phys. Lett. 76, 1695 (2000).
http://dx.doi.org/10.1063/1.126139
25.
25. C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).
http://dx.doi.org/10.1038/nature01665
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582819
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Room-temperature IR absorption of N-doped ZnO after annealing in O2 at 675oC and 775oC. The reduction in background free-carrier absorption corresponds to the dissociation of a fraction of the N-H complexes. Inset: Baseline-corrected spectra of N-H absorption peaks.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) Room-temperature PL emission spectra (excitation wavelength: 490 nm) for N-doped ZnO after annealing in O2 at (a) 675oC for 3.5 h, and subsequently at (b) 775 oC for 3.5 h and (c) 775 oC for 8.5 h. Also shown are the emission spectra of Cermet samples annealed in (d) Zn vapor and in (e) O2.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Room-temperature PLE spectrum for the red emission band at 730 nm wavelength, from the N-doped ZnO sample. Inset: Configuration coordinate diagram for the deep-acceptor model.11

Image of FIG. 4.

Click to view

FIG. 4.

IR absorption spectra obtained at 10 K during 475 nm light exposure and in the dark after exposure, using the spectrum before light exposure (not shown) as a reference. The increase in absorption is attributed to enhanced free-carrier absorption due to illumination.

Image of FIG. 5.

Click to view

FIG. 5.

(Color online) Room-temperature PL emission of the sample before and after hydrogen annealing. The disappearance of the “red” PL emission is attributed to hydrogen passivation of deep nitrogen acceptors.

Image of FIG. 6.

Click to view

FIG. 6.

Band alignment diagram, relative to the vacuum level, for several II-VI semiconductors.25 The constant (0/-) acceptor level (dashed line) results in nitrogen acting as a deep acceptor in ZnO. In the other semiconductors, this level is resonant with the valence band, causing nitrogen to act as a shallow acceptor.

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3582819
2011-04-14
2014-04-20

Abstract

Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations [Lyons, Janotti, and Van de Walle, Appl. Phys. Lett. 95, 252105 (2009)] indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence(PL) emission band near 1.7 eV, with an excitation onset of ∼2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. The deep-acceptor behavior can be explained by the low energy of the ZnOvalence band relative to the vacuum level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3582819.html;jsessionid=1pdji2otn1ds6.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3582819&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nitrogen is a deep acceptor in ZnO
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582819
10.1063/1.3582819
SEARCH_EXPAND_ITEM