1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Nitrogen is a deep acceptor in ZnO
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3582819
1.
1. Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z.-Q. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
http://dx.doi.org/10.1063/1.368595
2.
2. M. D. McCluskey and S. J. Jokela, J. Appl. Phys. 106, 071101 (2009).
http://dx.doi.org/10.1063/1.3216464
3.
3. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1453
4.
4. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
http://dx.doi.org/10.1063/1.1504875
5.
5. P. Fons, H. Tampo, A. V. Kolobov, M. Ohkubo, S. Niki, J. Tominaga, R. Carboni, F. Boscherini, and S. Friedrich, Phys. Rev. Lett. 96, 045504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.045504
6.
6. K. Thonke, T. Gruber, N. Teofilov, R. Schnfelder, A. Waag, and R. Sauer, Physica B 308–310, 945 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00877-8
7.
7. A. Zeuner, H. Alves, D. M. Hoffman, B. K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg and M. Dworzak, Phys. Status Solidi B 234, R7 (2002).
http://dx.doi.org/10.1002/1521-3951(200212)234:33.0.CO;2-D
8.
8. L. Wang and N. C. Giles, Appl. Phys. Lett. 84, 3049 (2004).
http://dx.doi.org/10.1063/1.1711162
9.
9. A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev. B 28, 946 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.946
10.
10. C. H. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073202
11.
11. J. L. Lyons, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett. 95, 252105 (2009).
http://dx.doi.org/10.1063/1.3274043
12.
12. S. J. Jokela, M. C. Tarun, and M. D. McCluskey, Physica B 404, 4801 (2009).
http://dx.doi.org/10.1016/j.physb.2009.08.238
13.
13. S. J. Jokela and M. D. McCluskey, J. Appl. Phys. 107, 113536 (2010).
http://dx.doi.org/10.1063/1.3443457
14.
14. G. A. Shi, M. Saboktakin, M. Stavola, and S. J. Pearton, Appl. Phys. Lett. 85, 5601 (2004).
http://dx.doi.org/10.1063/1.1832736
15.
15. V. Iota and B. A. Weinstein, Phys. Stat. Sol. B 211, 91 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3951(199901)211:1<91::AID-PSSB91>3.0.CO;2-M
16.
16. N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds, and D. C. Look, Appl. Phys. Lett. 80, 1334 (2002).
http://dx.doi.org/10.1063/1.1450041
17.
17. W. E. Carlos, E. R. Glaser, and D. C. Look, Physica B 308-310, 976 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00850-X
18.
18. Diode pumped solid state laser, wavelength 473 nm, peak power < 500 mW.
19.
19. D. V. Lang and R. A. Logan, Phys. Rev. Lett. 39, 635 (1977).
http://dx.doi.org/10.1103/PhysRevLett.39.635
20.
20. L. E. Halliburton, N. C. Giles, N. Y. Garces, Ming Luo. Chunchuan Xu, Lihai Bai, and L. A. Boatner, Appl. Phys. Lett. 87, 172108 (2005).
http://dx.doi.org/10.1063/1.2117630
22.
22. J. Han, T. S. Stavrinides, M. Kobayashi, R. L. Gunshor, M. M. Hagerott, and N. V. Nurmikko, Appl. Phys. Lett. 62, 840 (1993).
http://dx.doi.org/10.1063/1.108568
23.
23. R. M. Park, M. B. Troffer, C. M. Rouleau, J. M. DePuydt, and M. A. Haase, Appl. Phys. Lett. 57, 2127 (1990).
http://dx.doi.org/10.1063/1.103919
24.
24. L. Svob, C. Thiandoume, A. Lusson, M. Bouanani, Y. Marfaing, and O. Gorochov, Appl. Phys. Lett. 76, 1695 (2000).
http://dx.doi.org/10.1063/1.126139
25.
25. C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).
http://dx.doi.org/10.1038/nature01665
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582819
Loading
/content/aip/journal/adva/1/2/10.1063/1.3582819
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3582819
2011-04-14
2014-08-23

Abstract

Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations [Lyons, Janotti, and Van de Walle, Appl. Phys. Lett. 95, 252105 (2009)] indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence(PL) emission band near 1.7 eV, with an excitation onset of ∼2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. The deep-acceptor behavior can be explained by the low energy of the ZnOvalence band relative to the vacuum level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3582819.html;jsessionid=5sac39t1iqefo.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3582819&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nitrogen is a deep acceptor in ZnO
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582819
10.1063/1.3582819
SEARCH_EXPAND_ITEM