1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Optimized photolithographic fabrication process for carbon nanotube devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3582820
1.
1. S. Iijima, Nature 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
2.
2. S. J. Tans, M. H. Devoret, R. J. A. Groeneveld, et al., Nature 394, 761 (1998).
http://dx.doi.org/10.1038/29494
3.
3. M. Radosavljevic, M. Freitag, K. V. Thadani, et al., Nano Letters 2, 761 (2002).
http://dx.doi.org/10.1021/nl025584c
4.
4. J. Kong, N. R. Franklin, C. W. Zhou, et al., Science 287, 622 (2000).
http://dx.doi.org/10.1126/science.287.5453.622
5.
5. C. Staii, M. Chen, A. Gelperin, et al., Nano Letters 5, 1774 (2005).
http://dx.doi.org/10.1021/nl051261f
6.
6. S. Ghosh, A. K. Sood, S. Ramaswamy, et al., Science 299, 1042 (2003).
http://dx.doi.org/10.1126/science.1079080
7.
7. I. Brodie and J. Murray, The Physics of Micro/Nano-Fabrication (Plenum Press, New York, 1992).
8.
8. A. Tselev, K. Hatton, M. S. Fuhrer, et al., Nanotechnology 15, 1475 (2004).
http://dx.doi.org/10.1088/0957-4484/15/11/017
9.
9. P. Qi, O. Vermesh, M. Grecu, et al., Nano Letters 3, 347 (2003).
http://dx.doi.org/10.1021/nl034010k
10.
10. N. R. Franklin, Y. M. Li, R. J. Chen, et al., Applied Physics Letters 79, 4571 (2001).
http://dx.doi.org/10.1063/1.1429294
11.
11. F. Leonard and J. Tersoff, Physical Review Letters 84, 4693 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4693
12.
12. A. A. Talin, G. F. Cardinale, T. I. Wallow, et al., Journal of Vacuum Science & Technology B 22, 781 (2004).
http://dx.doi.org/10.1116/1.1689308
13.
13. J. Q. Lu, N. Moll, Q. Fu, et al., Chemical Materials 17, 2237 (2005).
http://dx.doi.org/10.1021/cm048280v
14.
14. A. M. Cassell, J. A. Raymakers, J. Kong, et al., Journal of Physical Chemistry B 103, 6484 (1999).
http://dx.doi.org/10.1021/jp990957s
16.
16. A. Javey, Q. Wang, W. Kim, et al., IEEE Electron Device Meeting (IEDM) Technical Digest, 31.2.1 (2003).
17.
17. J. Appenzeller, J. Knoch, V. Derycke, et al., Physical Review Letters 89 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.126801
18.
18. A. T. Johnson, C. Staii, M. Chen, et al., Semiconductor Science and Technology 21, S17 (2006).
http://dx.doi.org/10.1088/0268-1242/21/11/S03
19.
19. A. Javey, J. Guo, Q. Wang, et al., Nature 424, 654 (2003).
http://dx.doi.org/10.1038/nature01797
20.
20. S. Heinze, J. Tersoff, R. Martel, et al., Physical Review Letters 89 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.106801
21.
21. R. R. Johnson, A. T. C. Johnson, and M. L. Klein, Nano Letters 8, 69 (2008).
http://dx.doi.org/10.1021/nl071909j
22.
22. M. P. Waller, A. Robertazzi, J. A. Platts, et al., Journal of Computational Chemistry 4, 491 (2005).
23.
23. F. Tournus and J. C. Charlier, Physical Review B 71, 165421 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.165421
24.
24. F. Tournus, S. Latil, M. I. Heggie, et al., Physical Review B 72, 075431 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075431
25.
25. S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, New York, 1995).
26.
26. T. D. Yuzvinsky, W. Mickelson, S. Aloni, et al., Applied Physics Letters 87, 083103 (2005).
http://dx.doi.org/10.1063/1.2012529
27.
27. M. Cantoro, S. Hofmann, S. Pisana, et al., Nano Letters 6, 1107 (2006).
http://dx.doi.org/10.1021/nl060068y
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582820
Loading
/content/aip/journal/adva/1/2/10.1063/1.3582820
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3582820
2011-04-14
2014-10-02

Abstract

We have developed a photolithographic process for the fabrication of large arrays of single walled carbon nanotubetransistors with high quality electronic properties that rival those of transistorsfabricated by electron beam lithography. A buffer layer is used to prevent direct contact between the nanotube and the novolac-based photoresist, and a cleaning bake at 300C effectively removes residues that bind to the nanotube sidewall during processing. In situ electrical measurement of a nanotubetransistor during a temperature ramp reveals sharp decreases in the ON-state resistance that we associate with the vaporization of components of the photoresist. Data from nearly 2000 measured nanotubetransistors show an average ON-state resistance of 250 ± 100 kΩ. This new process represents significant progress towards the goal of high-yield production of large arrays of nanotubetransistors for applications including chemical sensors and transducers, as well as integrated circuit components.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3582820.html;jsessionid=2g956an2cgges.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3582820&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optimized photolithographic fabrication process for carbon nanotube devices
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3582820
10.1063/1.3582820
SEARCH_EXPAND_ITEM