1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Effect of DC bias on electrical conductivity of nanocrystalline α-CuSCN
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3583601
1.
1. H. Hosono, Thin Solid Films 515, 6000 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.125
2.
2. C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty and G. Hodes, Adv. Mater., 17, 1512 (2005).
http://dx.doi.org/10.1002/adma.200401848
3.
3. B. O’Regan, D. T. Schwartz, S. M. Zakeeruddin and M. Grätzel, Adv. Mater., 12, 1263 (2000).
http://dx.doi.org/10.1002/1521-4095(200009)12:17<1263::AID-ADMA1263>3.0.CO;2-T
4.
4. K. Tennakone, A. H. Jayatissa, C. A. N. Fernando, S. Wickramanayake, P. Punchihewa, L. K. Werasena and W. D. R. Premasiri, Phys. Stat. Solidi (a) 103, 491 (1987).
http://dx.doi.org/10.1002/pssa.2211030220
5.
5. B. R. Sankapal, E. Goncalves, A. Ennaoui, and M. Ch. Lux-Steiner, Thin Solid Films 451, 128 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.002
6.
6. J. F. Bringley, R. S. Eachus and A. P. Marchetti, J. Phys. Chem. B 106, 5346 (2002).
http://dx.doi.org/10.1021/jp020024n
7.
7. M. Yang, J. J. Zhu and J. J. Li, Mater. Letters 59, 842 (2005).
http://dx.doi.org/10.1016/j.matlet.2004.10.063
8.
8. T. Prakash, K. Padma Prasad, R. Kavitha, S. Ramasamy and B. S. Murty, J. Appl. Phys. 102, 104104 (2007).
http://dx.doi.org/10.1063/1.2815633
9.
9. J. E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969).
http://dx.doi.org/10.1016/0022-3697(69)90039-0
10.
10. J. R. Macdonald (Ed.) Impedance Spectroscopy: Emphasizing solid materials and systems, (Wiley, New York, 1987).
11.
11. R. Ramamoorthy, D. Sundararaman and S. Ramasamy, Solid State Ionics 123, 271 (1999).
http://dx.doi.org/10.1016/S0167-2738(99)00103-4
12.
12. R. N. Viswanath, A. Chandra Bose and S. Ramasamy, J. Phys. Chem. Solids, 62, 991 (2001).
http://dx.doi.org/10.1016/S0022-3697(01)00041-5
13.
13. H. Namikawa, J. Non-Crys. Solids 18, 173 (1975).
http://dx.doi.org/10.1016/0022-3093(75)90019-8
14.
14. A. Chandra Bose, P. Balaya, P. Thangadurai and S. Ramasamy, J. Phys. Chem. Solids 64, 659 (2003).
http://dx.doi.org/10.1016/S0022-3697(02)00368-2
15.
15. A. Chandra Bose, P. Thangadurai, S. Ramasamy and B. Purniah, Vacuum, 77, 293 (2004).
16.
16. A. Chandra Bose, P. Thangadurai, S. Ramasamy, V. Ganesan and S. Asokan, Nanotechnology 17, 1752 (2006).
http://dx.doi.org/10.1088/0957-4484/17/6/035
17.
17. T. B. Adams, D. C. Sinclair and A. R. West, Phys. Rev. B 73, 094124 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094124
18.
18. W. Lei and R. Schwartz, Phys. Rev. B 75, 012104 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.012104
19.
19. II-Doo Kim, A. Rothschild and H. L. Tuller, Appl. Phys. Lett. 88, 072902 (2006).
http://dx.doi.org/10.1063/1.2172739
20.
20. G. E. Pike and C. H. Seager, J. Appl. Phys. 50, 3414 (1979).
http://dx.doi.org/10.1063/1.326334
21.
21. J. Lee, J. H. Hwang, J. J. Mashek, T. O Mason, A. E. Miller and R. W. Siegel, J. Mater. Res. 10, 2295 (1995).
http://dx.doi.org/10.1557/JMR.1995.2295
22.
22. J. G. Na, M. C. Kim, T. D. Lee and S. J. Park, IEEE Trans. Magn. 29, 3520 (1993).
http://dx.doi.org/10.1109/20.281216
23.
23. S. Desgreniers and K. Lagarec, J. Appl. Cryst., 27, 432 (1994).
http://dx.doi.org/10.1107/S0021889893012610
24.
24. X. Guo, S. Mi and R. Waser, Electrochemical and Solid State Lett., 8, J1 (2005).
http://dx.doi.org/10.1149/1.1830393
25.
25. C. R. M. Grovenor, J. Phys. C: Solid State Phys. 18, 4079 (1985).
http://dx.doi.org/10.1088/0022-3719/18/21/008
26.
26. J. Dugas, J. P. Crest, C. M. Singal and J. Oualid, Solid State Electronics 26, 1069 (1983).
http://dx.doi.org/10.1016/0038-1101(83)90004-7
27.
27. J. C. Dyre, J. Appl. Phys. 64, 2456 (1988).
http://dx.doi.org/10.1063/1.341681
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3583601
Loading
/content/aip/journal/adva/1/2/10.1063/1.3583601
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3583601
2011-04-18
2014-11-29

Abstract

The grain boundary space charge depletion layer in nanocrystalline alpha phase CuSCN is investigated by studying electrical properties using impedance spectroscopic analysis in frequency domain. The measurements were performed at room temperature in wide frequency range 1 Hz to 1 MHz under various DC bias applied voltages ranges from 0 V to -2.1 V. The effect of bias on grain and grain boundary contribution electrical conductivity has been investigated by equivalent circuit model using non-linear least squares (NLLS) fitting of the impedance data. Three order of magnitude variation of grain boundary conductivity was observed for varying 0 V to -2.1 V. Variations in the σac clearly elucidate the DC bias is playing crucial role on grain boundary double Schottky barriers of nanocrystalline α-CuSCN.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3583601.html;jsessionid=94n9bqtmtlnle.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3583601&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of DC bias on electrical conductivity of nanocrystalline α-CuSCN
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3583601
10.1063/1.3583601
SEARCH_EXPAND_ITEM