1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3592522
1.
1. T. A. Mather and R. G. Harrison, Surveys in Geophysics 27, 387 (2006).
http://dx.doi.org/10.1007/s10712-006-9007-2
2.
2. D. M. Pai and B. E. Springett, Rev. Mod. Phys. 65, 163 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.163
3.
3. Plastverarbeiter 44, 26 (1993).
4.
4. D. K. Yanar and B. A. Kwetkus, J. Electrostat. 25, 257 (1995).
http://dx.doi.org/10.1016/0304-3886(94)00044-W
5.
5. M. Lungens, Minerals Engineering 17, 69 (2004).
http://dx.doi.org/10.1016/j.mineng.2003.10.010
6.
6. A. G. Bailey, J. Electrostat 51&52, 82 (2001).
http://dx.doi.org/10.1016/S0304-3886(01)00106-1
7.
7. De Magnete, W. Gilbert (Peter Short, London, 1600).
8.
8. C. Pounder, J. Electrostat 3, 389 (1977).
http://dx.doi.org/10.1016/0304-3886(77)90119-X
9.
9. Contact and Frictional Electrification, W. R. Harper (Laplacian, Morgan Hill, 1998).
10.
10. F. R. Ruckdeschel and L. P. Hunter, J. Appl. Phys. 46, 4416 (1975).
http://dx.doi.org/10.1063/1.321469
11.
11. J. Lowell J and A. C. Rose-Innes, Adv. Phys. 29, 947 (1980).
http://dx.doi.org/10.1080/00018738000101466
12.
12. G. S. P. Castle, J. Electrostat. 40&41, 13 (1997).
http://dx.doi.org/10.1016/S0304-3886(97)00009-0
13.
13. L. B. Schein, Science 316, 1572 (2007).
http://dx.doi.org/10.1126/science.1142325
14.
14. L. S. McCarty and G. M. Whitesides, Angew. Chem. Int. Ed. 47, 2188 (2008).
http://dx.doi.org/10.1002/anie.200701812
15.
15. C. Liu and A. J. Bard, Chem. Phys. Lett. 480, 145 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.08.045
16.
16. G. J. Stoney, Philos. Mag. 38, 418 (1894).
17.
17. P. E. Shaw and C. Jex, Proc. R. Soc. London Ser. A 118, 97 (1928).
http://dx.doi.org/10.1098/rspa.1928.0037
18.
18. L. B. Loeb, Science 102, 573 (1945).
http://dx.doi.org/10.1126/science.102.2658.573
19.
19. P. S. H. Henry, Br. J. Appl. Phys. 4, S6 (1953).
http://dx.doi.org/10.1088/0508-3443/4/S2/302
20.
20. C. K. Kajdas, Tribology Int. 38, 337 (2005).
http://dx.doi.org/10.1016/j.triboint.2004.08.017
21.
21. O. Knoblauch, Z. Phys. Chem. 39, 225 (1905).
22.
22. J. A. Medley, Nature 171, 1077 (1953).
http://dx.doi.org/10.1038/1711077a0
23.
23. R. B. Brück. Kunststoffe 71, 234 (1981).
24.
24. H. A. Mizes, E. M. Conwell, and D. P. Salamida, Appl. Phys. Lett. 56, 1597 (1990).
http://dx.doi.org/10.1063/1.103139
25.
25. A. F. Diaz and J. Guay, IBM J. Res. Develop. 37, 249 (1993).
http://dx.doi.org/10.1147/rd.372.0249
26.
26. A. F. Diaz and R. M. Felix-Navarro, J. Eletrostat. 62, 277 (2004).
http://dx.doi.org/10.1016/j.elstat.2004.05.005
27.
27. S. Pence, V. J. Novotny, and A. F. Diaz, Langmuir 10, 592 (1994).
http://dx.doi.org/10.1021/la00014a042
28.
28. L. B. Schein, M. LaHa, and D. Novotny, Phys. Lett. A 167, 79 (1992).
http://dx.doi.org/10.1016/0375-9601(92)90630-5
29.
29. P. S. H. Henry, Br. J. Appl. Phys. 4, S31 (1953).
http://dx.doi.org/10.1088/0508-3443/4/S2/313
30.
30. T. S. Komatsu, M. Hashimoto, T. Miura, I. Arakawa, and S. Nasuno, Appl. Surf. Sci. 235, 60 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.05.133
31.
31. M. D. Hogue, E. R. Mucciolo, C. I. Calle, and C. R. Buhler, J. Electrostat. 63, 179 (2005).
http://dx.doi.org/10.1016/j.elstat.2004.09.003
32.
32. C. Liu and A. J. Bard, Nature Materials 7, 505 (2008).
http://dx.doi.org/10.1038/nmat2160
33.
33. C. Liu and A. J. Bard, JACS 131, 6397 (2009).
http://dx.doi.org/10.1021/ja806785x
34.
34. G. C. Lichtenberg, Novi Comment 8, 168 (1777).
35.
35. K. Bürker, Annalen der Physik 1, 474 (1900).
36.
36. H. H. Hull, J. Appl. Phys. 20, 1157 (1949).
http://dx.doi.org/10.1063/1.1698290
37.
37. G. Heyl, Kunststoffe 60, 45 (1970).
38.
38. T. Shinbrot, T. S. Komasu, and Q. Zhao, Europhys. Lett. 83, 24004 (2008).
http://dx.doi.org/10.1209/0295-5075/83/24004
39.
39. K. A. Hughes and P. E. Secker, J. Phys. E: Scientific Instruments 4, 362 (1971).
http://dx.doi.org/10.1088/0022-3735/4/5/007
40.
40. B. Scruton and H. H. Blott, J. Phys. E 6, 362 (1973).
http://dx.doi.org/10.1088/0022-3735/6/5/019
41.
41. E. A. Baum, T. L. Lewis, and R. Toomer, J. Phys. D 11, 963 (1978).
http://dx.doi.org/10.1088/0022-3727/11/6/016
42.
42. J. Lowell, J. Phys. D 17, 1859 (1984).
http://dx.doi.org/10.1088/0022-3727/17/9/011
43.
43. S. Singh and G. L. Hearn, J. Electrostat. 16, 353 (1985).
http://dx.doi.org/10.1016/0304-3886(85)90057-9
44.
44. H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer, J. Appl. Phys. 84, 1168 (1998).
http://dx.doi.org/10.1063/1.368181
45.
45. J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 53, 2717 (1988).
http://dx.doi.org/10.1063/1.100162
46.
46. N. Knorr, S. Rosselli, T. Miteva, and G. Nelles, J. Appl. Phys. 105, 114111 (2009).
http://dx.doi.org/10.1063/1.3143604
47.
47. N. Knorr, S. Rosselli, and G. Nelles, J. Appl. Phys. 107, 054106 (2010).
http://dx.doi.org/10.1063/1.3309763
48.
48. B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, Phys. Rev. Lett. 63, 2669 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.2669
49.
49. B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, J. Vac. Sci. Technol. A 8, 374 (1990).
http://dx.doi.org/10.1116/1.576399
50.
50. H. Sun, H. Chu, J. Wang, L. Ding, and Y. Li, Appl. Phys. Lett. 96, 083112 (2010).
http://dx.doi.org/10.1063/1.3330866
51.
51. A. Galembeck, C. A. R. Costa, M. C. V. M. da Silva, E. F. Souza, and F. Galembeck, Polymer 42, 4845 (2001).
http://dx.doi.org/10.1016/S0032-3861(00)00921-6
52.
52. V. Albrecht, A. Janke, A. Drechsler, G. Schubert, E. Németh, and F. Simon, Progr. Colloid. Polym. Sci. 132, 48 (2006).
http://dx.doi.org/10.1007/b104970
53.
53. V. Albrecht, A. Janke, E. Németh, S. Spange, G. Schubert, and F. Simon, J. Electrostat. 67, 7 (2009).
http://dx.doi.org/10.1016/j.elstat.2008.10.002
54.
54. J. A. Wiles, B. A. Grzybowski, A. Winkelman, and G. M. Whitesides, Anal. Chem. 75, 4859 (2003).
http://dx.doi.org/10.1021/ac034275j
55.
55. See supplementary material at http://dx.doi.org/10.1063/1.3592522 for SP and topography scans of all nine polymer rubbing combinations, scans of the charge distribution of a rubbed bump and a depression and of further offsets of rubbed tracks, as well as an optical microscopy image of a COC-covered cotton swab. [Supplementary Material]
56.
56. N. Garoff and S. Zauscher, Langmuir 18, 6921 (2002).
http://dx.doi.org/10.1021/la025787g
57.
57. J. Lowell and A. R. Akande, J. Phys. D 21, 125 (1988).
http://dx.doi.org/10.1088/0022-3727/21/1/018
58.
58. P. E. Shaw and R. F. Hanstock, Proc. R. Soc. London Ser. A 128, 474 (1930).
http://dx.doi.org/10.1098/rspa.1930.0125
59.
59. J. Lowell and W. S. Truscott, J. Phys. D 19, 1273 (1986).
http://dx.doi.org/10.1088/0022-3727/19/7/017
60.
60. J. Lowell and W. S. Truscott, J. Phys. D 19, 1281 (1986).
http://dx.doi.org/10.1088/0022-3727/19/7/018
61.
61. D. J. Lacks, N. Duff, and S. K. Kumar, Phys. Rev. Lett. 100, 188305 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.188305
62.
62. J. F. Kok and D. J. Lacks, Phys. Rev. E 79, 051304 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.051304
63.
63. W. R. Salaneck, A. Paton, and D. T. Clark, J. Appl. Phys. 47, 144 (1976).
http://dx.doi.org/10.1063/1.322306
64.
64. A. Wahlin and G. Bäckström, J. Appl. Phys. 45, 2058 (1974).
http://dx.doi.org/10.1063/1.1663545
65.
65. J. A. Wiles, M. Fialkowski, M. R. Radowski, G. M. Whitesides, and B. A. Grzybowski, J. Phys. Chem. B 108, 20296 (2004).
http://dx.doi.org/10.1021/jp0457904
66.
66. M. I. Kornfeld, J. Phys. D 9, 1183 (1976).
http://dx.doi.org/10.1088/0022-3727/9/8/005
67.
67. M. M. Apodaca, P. J. Wesson, K. J. M. Bishop, M. A. Ratner, and B. A. Grzybowski, Angew. Chem. Int. Ed. 49, 946 (2010).
68.
68. P. A. Thiel and T. E. Madey, Surf. Sci. Rep. 7, 211 (1987).
http://dx.doi.org/10.1016/0167-5729(87)90001-X
69.
69. M. A. Henderson, Surf. Sci. Rep. 46, 1 (2002).
http://dx.doi.org/10.1016/S0167-5729(01)00020-6
70.
70. Y. Rudich, I. Benjamin, R. Naaman, E. Thomas, S. Trakhtenberg, and R. Ussyshkin, J. Phys. Chem. A 104, 5238 (2000).
http://dx.doi.org/10.1021/jp994203p
71.
71. A. L. Sumner, E. J. Menke, Y. Dubowski, J. T. Newberg, R. M. Penner, J. C. Hemminger, L. M. Wingen, T. Brauers, and B. J. Finlayson-Pitts, Phys. Chem. Chem. Phys. 6, 604 (2004).
http://dx.doi.org/10.1039/b308125g
72.
72. S. G. Moussa, T. M. McIntire, M. Szoöri, M. Roeselová, D. J. Tobias, R. L. Grimm, J. C. Hemminger, and B. J. Finlayson-Pitts, J. Phys. Chem. A 113, 2060 (2009).
http://dx.doi.org/10.1021/jp808710n
73.
73. J. K. Beattie, A. M. Djerdjev, and G. G. Warr, Faraday Discussions 141, 31 (2009).
http://dx.doi.org/10.1039/b805266b
74.
74. R. Zimmermann, U. Freudenberg, R. Schweiß, D. Küttner, and C. Werner, Curr. Opin. Colloid Interface Sci. 15, 196 (2010).
http://dx.doi.org/10.1016/j.cocis.2010.01.002
75.
75. S. Gomez-Monivas, J. J. Saenz, M. Calleja, and R. Garcıa, Phys. Rev. Lett. 91, 056101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.056101
76.
76. M. Faraday, Philos. Trans. R. Soc. London 133, 17 (1843).
http://dx.doi.org/10.1098/rstl.1843.0004
77.
77. J. Kindersberger and C. Lederle, IEEE Trans. Dielectr. Electr. Insul. 15, 941 (2008).
http://dx.doi.org/10.1109/TDEI.2008.4591214
78.
78. J. Kindersberger and C. Lederle, IEEE Trans. Dielectr. Electr. Insul. 15, 949 (2008).
http://dx.doi.org/10.1109/TDEI.2008.4591215
79.
79. M. D. Hogue, E. R. Mucciolo, and C. I. Calle, J. Electrostat. 65, 274 (2007).
http://dx.doi.org/10.1016/j.elstat.2006.10.003
80.
80. R. F. Gouveia and F. Galembeck, J. Am. Chem. Soc.131, 11381 (2009).
http://dx.doi.org/10.1021/ja900704f
81.
81. H. F. Vieweg, J. Phys. Chem. 30, 865 (1926).
http://dx.doi.org/10.1021/j150265a001
82.
82. P. Lenard, Ann. Phys. 47, 352 (1915).
83.
83. Kapillarchemie, H. Freundlich (Akademische Verlagsgesellschaft, Leipzig, 3rd edition, 1923).
84.
84. Physical Chemistry of Surfaces, A. W. Adamson and A. P. Gast (Wiley-Interscience, 6rd edition, 1997).
85.
85. R. Zangi and B. F. N. Engberts, JACS 127, 2272 (2005).
http://dx.doi.org/10.1021/ja044426f
86.
86. J. K. Beattie, Lab Chip 6, 1409 (2006).
http://dx.doi.org/10.1039/b610537h
87.
87. T. W. Healy and D. W. Fuerstenau, J. Colloid Interface Sci. 309, 183 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.01.048
88.
88. K. N. Kudin and R. Car, JACS 130, 3951 (2008).
http://dx.doi.org/10.1021/ja077205t
89.
89. J. Lützenkirchen, C. Richter, and F. Brandstein, Adsorption 16, 249 (2010).
http://dx.doi.org/10.1007/s10450-010-9228-z
90.
90. R. Zimmermann, S. Dukhin, and C. Werner, J. Phys. Chem. B 105, 8544 (2001).
91.
91. O. Markovitch and N. Agmon, J. Phys. Chem. A Lett. 111, 2253 (2007).
92.
92. O. Markovitch, H. Chen, S. Izvekov, F. Paesani, G. A. Voth, and N. Agmon, J. Phys. Chem. B 112, 9456 (2008).
http://dx.doi.org/10.1021/jp804018y
93.
93. D. Marx, A. Chandra, and M. E. Tuckerman, Chem. Rev. 110, 2174 (2010).
http://dx.doi.org/10.1021/cr900233f
94.
94. Atkins’ Physical chemistry, P. Atkins and J. de Paula (Oxford university press, 9th edition, 2009).
95.
95. S. I. Mamatkulov and P. K. Khabibullaev, Langmuir 20, 4756 (2004).
http://dx.doi.org/10.1021/la036036x
96.
96. D. K. Das-Gupta, IEEE Trans. Electr. Insul. 27, 909 (1992).
http://dx.doi.org/10.1109/14.256469
97.
97. A. E. Seaver, J. Electrost. 63, 203 (2005).
http://dx.doi.org/10.1016/j.elstat.2004.09.004
98.
98. H. K. Londsdale, J. Membr. Sci. 10, 81 (1982).
http://dx.doi.org/10.1016/S0376-7388(00)81408-8
99.
99. T. Xu, J. Membr. Sci. 263, 1 (2005).
http://dx.doi.org/10.1016/j.memsci.2005.05.002
100.
100. L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, Water Res. 43, 2317 (2009).
http://dx.doi.org/10.1016/j.watres.2009.03.010
101.
101. H. J. Jacobasch and J. Schurz, Prog. Colloid. Polym. Sci. 77, 40 (1988).
http://dx.doi.org/10.1007/BFb0116754
102.
102. H. Helmholtz, Annalen der Physik und Chemie 7, 22 (1879).
103.
103. F. Zöllner, Annalen der Physik und Chemie 68, 32 (1876).
104.
104. J. Sohma, Prog. Polym. Sci. 14, 451 (1989).
http://dx.doi.org/10.1016/0079-6700(89)90004-X
105.
105. M. K. Beyer and H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005).
http://dx.doi.org/10.1021/cr030697h
106.
106. M. M. Caruso, D. A. Davis, Q. Shen, S. A. Odom, N. R. Sottos, S. R. White, and J. S. Moore, Chem. Rev. 109, 5755 (2009).
http://dx.doi.org/10.1021/cr9001353
107.
107. Tribochemistry, G. Heinicke (Carl Hanser Verlag, Munich, Germany, 1984).
108.
108. P. G. Fox, J. Mater. Sci. 10, 340 (1975).
http://dx.doi.org/10.1007/BF00540358
109.
109. C. Kajdas and K. Hiratsuka, J. Eng. Tribology 223, 827 (2009).
110.
110. K. Nakayama and H. Hashimoto, Wear 147, 335 (1991).
http://dx.doi.org/10.1016/0043-1648(91)90190-6
111.
111. K. Nakayama, N. Suzuki, and H. Hashimoto, J. Phys. D 25, 303 (1992).
http://dx.doi.org/10.1088/0022-3727/25/2/027
112.
112. D. K. Backman and K. L. Devries, J. Polym. Sci. A 7, 2125 (1969).
http://dx.doi.org/10.1002/pol.1969.150070810
113.
113. J. Sohma and M. Sakaguchi, Adv. Polym. Sci. 20, 109 (1976).
http://dx.doi.org/10.1007/BFb0023967
114.
114. M. Sakaguchi, Y. Miwa, S. Hara, Y. Sugino, K. Yamamoto, and S. Shimada, J. Electrostat. 62, 35 (2004).
http://dx.doi.org/10.1016/j.elstat.2004.04.003
115.
115. J. Henniker, Nature 196, 474 (1962).
http://dx.doi.org/10.1038/196474a0
116.
116. P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parinello, Science 291, 2121 (2001).
http://dx.doi.org/10.1126/science.1056991
117.
117. D. Aktah and I. Frank, J. Am. Chem. Soc. 124, 3402 (2002).
http://dx.doi.org/10.1021/ja004010b
118.
118. L. Bürgi, N. Knorr, H. Brune, M. A. Schneider, and K. Kern, Appl. Phys. A 75, 141 (2002).
http://dx.doi.org/10.1007/s003390101062
119.
119. P. Lazic and B. N. J. Persson, Europhys. Lett. 91, 46003 (2010).
http://dx.doi.org/10.1209/0295-5075/91/46003
120.
120. K. Nakayama and R. A. Nevshupa, J. Phys. D 35, L53 (2002).
http://dx.doi.org/10.1088/0022-3727/35/12/101
121.
121. E. Constable, J. Horvat, and R. A. Lewis, Appl. Phys. Lett. 97, 131502 (2010).
http://dx.doi.org/10.1063/1.3493653
122.
122. S. Sadewasser, C. Leendertz, F. Streicher, and M. Ch. Lux-Steiner, Nanotechnology 20, 505503 (2009).
http://dx.doi.org/10.1088/0957-4484/20/50/505503
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3592522
Loading
/content/aip/journal/adva/1/2/10.1063/1.3592522
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3592522
2011-05-18
2014-12-20

Abstract

Though triboelectric charging of insulators is common, neither its mechanism nor the nature of the charge is well known. Most research has focused on the integral amount of charge transferred between two materials upon contact, establishing, e.g., a triboelectric series. Here, the charge distribution of tracks on insulating polymer films rubbed by polymer-covered pointed swabs is investigated in high resolution by Kelvin probe force microscopy. Pronounced bipolar charging was observed for all nine rubbing combinations of three different polymers, with absolute surface potentials of up to several volts distributed in streaks along the rubbing direction and varying in polarity on μm-length scales perpendicular to the rubbing direction. Charge densities increased considerably for rubbing in higher relative humidity, for higher rubbing loads, and for more hydrophilic polymers. The ends of rubbed tracks had positively charged rims. Surface potential decay with time was strongly accelerated in increased humidity, particularly for polymers with high water permeability. Based on these observations, a mechanism is proposed of triboelectrification by extrusions of prevalently hydrated protons, stemming from adsorbed and dissociated water, along pressure gradients on the surface by the mechanical action of the swab. The validity of this mechanism is supported by explanations given recently in the literature for positive streaming currents of water at polymer surfaces and by reports of negative charging of insulators tapped by accelerated water droplets and of potential built up between the front and the back of a rubbing piece, observations already made in the 19th century. For more brittle polymers, strongly negatively charged microscopic abrasive particles were frequently observed on the rubbed tracks. The negative charge of those particles is presumably due in part to triboemission of electrons by polymer chain scission, forming radicals and negatively charged ions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3592522.html;jsessionid=3ed0iaqrsn7m0.x-aip-live-02?itemId=/content/aip/journal/adva/1/2/10.1063/1.3592522&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3592522
10.1063/1.3592522
SEARCH_EXPAND_ITEM