Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/2/10.1063/1.3592525
1.
1. R. C. Davidson, Phys. Plasmas 14, 060401 (2007).
http://dx.doi.org/10.1063/1.2753475
2.
2. G. Knorr, Plasma Phys. Control. Fusion 26, 949 (1984).
http://dx.doi.org/10.1088/0741-3335/26/7/009
3.
3. P. F. Kurbatov, Modern view on physics of low- pressure gas D.C. discharge, Preprint of Institute of Laser Physics SB RAS, Novosibirsk, No. 3, (2001) (in Russian).
4.
4. P. F. Kurbatov, Problems of Atomic Science and Technology. Series: Plasma Physics (13) 1, 157 (2007).
5.
5. W. Schottky, Phys. Zeit. Bd 25, 638 (1924).
6.
6. L. Tonks and I. Langmuir, Phys. Rev. 34, 876 (1929).
http://dx.doi.org/10.1103/PhysRev.34.876
7.
7. L. B. Loeb, Fundamental processes in gas electronics. (Berkeley University Press, Berkeley, CA, 1939).
8.
8. V. L. Granovsky, Electric current in a gas: steady-state current ed. L A Sena and V E Golant, (Nauka, Moscow, 1971) (in Russian).
9.
9. B. M. Smirnov, Introduction to physics of plasma (Mir Publisher, Moscow, 1977).
10.
10. Yu. P. Raizer, Gas discharge Physics (Springer- Verlag, Berlin, 1997).
11.
11. Encyclopedia of Low Temperature Plasma: 2 volumes ed Fortov V. E. (Nauka, Moscow, 2000) (in Russian).
12.
12. M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing (Hoboken, Wiley Interscience, 2005).
13.
13. R. E. Robson, R. D. White, and Z. Lj. Petrovic, Rev. Mod. Phys. 77, 1303 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.1303
14.
14. G. K. Grubert and D. Loffhagen, IEEE Trans. Plasma Sci. 35, 1215 (2007).
http://dx.doi.org/10.1109/TPS.2007.905115
15.
15. M. Gnybida, D. Loffhagen, and D. Uhrlandt, IEEE Trans. Plasma Sci., 37, 1208 (2009) and references therein.
http://dx.doi.org/10.1109/TPS.2009.2021419
16.
16. L. D. Tsendin, Plasma Sources Sci. Technol. 18, 014020 (1-18) (2009).
http://dx.doi.org/10.1088/0963-0252/18/1/014020
17.
17. B. M. Smirnov, Phys. Usp. 52, 559 (2009).
http://dx.doi.org/10.3367/UFNe.0179.200906e.0591
18.
18. Kh. A. Gerpetov and A. A. Zaitsev, Sov. Phys. JETF 24, 517 (1953) (in Russian).
19.
19. A. Garscadden and D. A. Lee, Int. J. Electronics 20, 567 (1966).
http://dx.doi.org/10.1080/00207216608937890
20.
20. D. A. Lee, A. Bletzinger A, and A. Garscadden, J. Appl. Phys. 37, 377 (1966).
http://dx.doi.org/10.1063/1.1707844
21.
21. A. V. Negospasov, Sov. Phys.Usp. 11, 174 (1968).
http://dx.doi.org/10.1070/PU1968v011n02ABEH003806
22.
22. L. Pecarek, Sov. Phys.Usp. 11, 188 (1968).
http://dx.doi.org/10.1070/PU1968v011n02ABEH003809
23.
23. P. S. Landa, N. A. Miskinova, and Yu. V. Ponomarev, Sov. Phys.Usp. 23, 813 (1980).
http://dx.doi.org/10.1070/PU1980v023n12ABEH005075
24.
24. H. Haken, Synergetics (Springer- Verlag, Heidelberg, Berlin, New York, 1978).
25.
25. A. M. Turing, Phil. Trans. Roy. Soc. Lond.B 237, 37 (1952).
http://dx.doi.org/10.1098/rstb.1952.0012
26.
26. G. Nicolas and I. Prigogine, Self-organization in nonequilibrium system. From dissipative structures to order through fluctuations (John Wiley & Sons, New York, London, Sydney, Toronto, 1977).
27.
27. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North- Holland Physics Publishing, Amsterdam, Oxford, New York, Tokyo, 1984).
28.
28. R. Gilmore, Catastrophe theory for scientists and engineers (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1981).
29.
29. H. Wilhelmsson and E. Lazzaro, Reaction- diffusion problems in the physics of hot plasmas (IOP Publishing, Bristol and Philadelphia, 2000).
30.
30. E. Ammelt, Yu. A. Astrov, and H.-G. Purwings, Phys. Rev.E58, 7109 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.7109
31.
31. E. L. Gurevich, A. W. Liehr, Sh. Amiranashvily, and H. G. Purwings H-G, Phys. Rev. E 69, 036211 (1-7) (2004).
http://dx.doi.org/10.1103/PhysRevE.69.036211
32.
32. B. Bruhn, B.-P. Koch, and C. Wike, Contrib. Plasma Phys. 45, 328 (2005).
http://dx.doi.org/10.1002/ctpp.200510038
33.
33. A. Dinklage, B. Bruch, H. Testrich, and C. Wike, Phys. Plasmas, 15, 063502 (2008).
http://dx.doi.org/10.1063/1.2918337
34.
34. P. F. Kurbatov, Proceedings(of the Fourth International Symposium ‘Modern Problems of Laser Physics’ (Novosibirsk, Russia, August 22-27, 2004 ed S Bagayev)). (Institute of Laser Physics SB RAS, Novosibirsk, 2005) pp. 263272.
35.
35. P. F. Kurbatov, Book of abstracts (of the 13th International Congress on Plasma Physics (Kiev, Ukraine, May 22-26, 2006) (Bogolyubov Institute for Theoretical Physics, National Academy of Science of Ukraine, Kiev, 2006) A023 p. 26.
36.
36. Yu. M. Aliev, H. Schlüter and A. Shivarova, Guided-Wave-Produced Plasmas (Springer, Berlin, 2000).
37.
37. H. Schlüter and A. Shivarova, Phys. Rep. 443, 121 (2007) and references therein.
http://dx.doi.org/10.1016/j.physrep.2006.12.006
38.
38. P. Debye and E. Hünckel, Phyz. Z. 24, 185 (1923).
39.
39. A. A. Zaitsev and G. S. Leonov, Sov. Radiotecn. Electron. 10, 913 (1965) (in Russian).
40.
40. V. L. Bonch-Bruevich, I. P. Zvyagin, and A. G. Mironov, Domain electric instability in semiconductors (Consultants Bureau, New-York, 1975).
41.
41. A. A. Andronov, E. A. Leontowich, I. I. Gordon, and A. G. Mayer Qualitative theory of second- order dynamic systems (John Wiley & Sons, New York, 1973).
42.
42. P. G. De Gennes, Superconductivity of metal and alloys (W.A. Benjamin, Inc, New-York- Amsterdam, 1966).
43.
43. M. Lax, Fluctuation and coherence phenomena in classical and quantum physics (Gondon and Breanch, New York, 1968).
44.
44. H. Golstein, Classical Mechanics (Addison- Wesley Press, Cambridge, 1950).
45.
45. L. D. Landau and E. M. Lifshitz, Mechanics vol 1 (Pergamon Press, Oxford, 1976).
46.
46. R. Thom, Structural stability and morphogenesis: an outline of a general theory of models (CA: Benjamin Cummings, Redwood City, 1975).
47.
47. W. E. Lamb, Phys. Rev. 134, 1429 (1964).
http://dx.doi.org/10.1103/PhysRev.134.A1429
48.
48. L. D. Landau and E. M. Lifshitz, Quantum Mechanics. Non-relativistic theory vol 3 (Pergamon Press, Oxford, 1977).
49.
49. A. B. Stewart, J. Appl. Phys. 27, 911 (1956).
http://dx.doi.org/10.1063/1.1722513
50.
50. G. B. Whitham, Linear and nonlinear waves. (John Wiley & Sons, New York, London, Sydney, Toronto, 1974).
51.
51. G. A. Korn and T. M. Korn T. M. Mathematical handbook for scientists and engineers. Definition, theorems and formulas for reference and review (McGraw- Hill Book Company, New York, San Francisco, London, Sydney, Toronto, 1968).
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3592525
Loading
/content/aip/journal/adva/1/2/10.1063/1.3592525
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3592525
2011-05-10
2016-12-04

Abstract

A one-dimension model for positive-column plasma is analyzed. In the framework of this model, a complete, self-consistent set of equations for the plasma column is proposed and justified. Basic prerequisites for the model and the equations used in it are discussed at length to clarify the mathematics and physics that underlie the proposed generalized description of plasma states. A study of the equations has unveiled the existence of two structurally stable types of steady states and three integrals of motion in the plasma system. The first type of states corresponds to spatially homogeneous plasma, and the second type, to the self-forming plasma structure with striations. Analysis of spatio-temporal plasma structures (spatially homogeneous and stratified stationary plasma states) and their attendant phenomena is given in detail. It is shown that the equations offer a more penetrating insight into the physical states and properties of positive-column plasma in dc-driven gas discharges, and into the various phenomena proceeding in the discharge system. Such a behavior is intimately related to the influence which the electric field has on the rate of ionization reactions. The theoretical results are compared to experimental data and can be used for to place the great body of experimental data in their proper framework. The modern fluid bifurcation model proposed to describe the properties of non-isothermic positive-column plasma in dc-driven low-pressure noble-gas discharges proved to be rather realistic, capable of adequately reproducing the basic properties of real field-plasma systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3592525.html;jsessionid=i2dlB6fifxkTH7dCe-lBSrAo.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3592525&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/2/10.1063/1.3592525&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/2/10.1063/1.3592525'
Right1,Right2,Right3,