Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47 777 (1935).
2. J. S. Bell, Physics 1 195 (1964).
3. N. Gisin, Phys. Lett. A 154 201 (1991).
4. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974).
5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2002).
6. (a) D. Guilini et al., Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996);
6.(b) M. B. Mensky, Quantum Measurements and Decoherence (Kluwer, Dordrecht, 2000);
6.(c) H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002);
6.(d) M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2007);
6.(e) W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003);
6.(f) V. M. Akulin, A. Sarfati, G. Kurizki, and S. Pellegrin, Decoherence, Entanglement and Information Protection in Complex Quantum Systems, NATO Science Series II –Vol. 189 (Springer, Dordrecht, 2005).
7. L. S. Schulman and B. Gaveau, Phys. Rev. Lett. 97, 240405 (2006).
8. B. Gaveau and L. S. Schulman, J. Phys. A: Math. Theor. 43, 055308 (2010).
9. N. Erez, G. Gordon, M. Nest, and G. Kurizki, Nature 452, 724, (2008).
10. G. Gordon et al., New J. Phys. 11, 123025 (2009).
11. G. A. Álvarez, D. D. Bhaktavatsala Rao, L. Frydman, and G. Kurizki, Phys. Rev. Lett. 105, 160401 (2010).
12. G. I. Watson, J. Phys.: Condens. Matter 8, 5955 (1996).
13. G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Dover Publ., Mineola, 1996).
14. (a) W. Marshall and S. W. Lovesey, Theory of Thermal Neutron Scattering, (Oxford University Press, Oxford, 1971);
14.(b) S. W. Lovesey, Theory of Neutron Scattering form Condensed Matter (Oxford University Press, Oxford, 1984).
15. P. C. Hohenberg and P. M. Platzman, Phys. Rev. 152, 198 (1966).
16. A. H. Compton, Phys. Rev. 21, 483 (1923).
17. G. B. West, Phys. Rep. 18, 263 (1975).
18. V. F. Sears, Phys. Rev. B 30, 44 (1984).
19. H. G. Schimmel, W. Montfrooli, V. W. J. Verhoeven, and I. M. de Schepper, Europhys. Lett. 60, 868 (2002).
20. L. E. Ballentine, Quantum Mechanics – A Modern Development (World Scientific, Singapore, 1998).
21. F. Lindner et al., Phys. Rev. Lett. 95, 040401 (2005).
22. P. Szriftgiser, D. Gury-Odelin, M. Arndt, and J. Dalibard, Phys. Rev. Lett. 77, 4 (1996).
23. C. Andreani, A. Filabozzi and E. Pace, Phys. Rev. B 51, 8854 (1995).
24. C. Andreani, D. Colognesi, and E. Pace, Phys. Rev. B 60, 10008 (1999).
25. A. Messiah, Quantum Mechanics, Vol. II (North Holland, Amsterdam, 1965).
26. C. A. Chatzidimitriou-Dreismann and S. Stenholm, in: Ref. 6(f), pp. 555562; also available at arXiv:quant-ph/0702038v1.
27. E. Goulielmakis et al., Nature 466, 739 (2010).
28. L. Lin, J. A. Morrone, R. Car, and M. Parrinello, Phys. Rev. Lett. 105, 110602 (2010).
29. (a) H. D. Zeh, Found. Phys. 1, 69 (1970), and 3, 109 (1973);
29.(b) M. B. Mensky, Phys. Rev. D 20, 384 (1979);
29.(c) W. H. Zurek, Phys. Rev. D 24, 1516 (1981);
29.(d) A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983);
29.(e) E. Joos and H. D. Zeh, Z. Phys. B 59, 223 (1985).
30. J. Mayers and M. A. Adams, Calibration of the electron volt spectrometer VESUVIO at ISIS, Technical Report RAL-TR-2009-022, October 2009.
31. J. Mayers and T. Abdul-Redah, J. Phys: Condens. Matter 16, 4811 (2004).
32. S. F. Mughabghab, Neutron Cross Sections (Academic Press, Orlando, 1984).

Data & Media loading...


Article metrics loading...



Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum systemAB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutronCompton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3%) than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd