Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/2/10.1063/1.3596359
1.
1. A. Mandelis, Diffusion-Wave Fields, Mathematical Methods and Green Functions (Springer, New York, 2001).
2.
2. M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging (SIAM, Philadelphia, 1988).
3.
3. N. Baddour, Journal of the Acoustical Society of America 123, 25772590 (2008).
http://dx.doi.org/10.1121/1.2897132
4.
4. N. Baddour, Journal of the Franklin Institute 345, 792818 (2008).
http://dx.doi.org/10.1016/j.jfranklin.2008.04.010
5.
5. N. Baddour, Journal of Physics A: Mathematical and General 39, 1437914395 (2006).
http://dx.doi.org/10.1088/0305-4470/39/46/010
6.
6. A. Mandelis, J. Opt. Soc. Am. A 6, 298308 (1989).
http://dx.doi.org/10.1364/JOSAA.6.000298
7.
7. A. Mandelis, J. Appl. Phys. 78, 647655 (1995).
http://dx.doi.org/10.1063/1.360724
8.
8. C. L. Matson, Optics Express 1, 611 (1997).
http://dx.doi.org/10.1364/OE.1.000006
9.
9. L. Nicolaides, M. Munidasa, and A. Mandelis, Inverse Problems 13, 14131425 (1997).
http://dx.doi.org/10.1088/0266-5611/13/5/019
10.
10. A. Mandelis, J. Phys. A: Math. Gen. 24, 24852505 (1991).
http://dx.doi.org/10.1088/0305-4470/24/11/016
11.
11. M. Puschel and J. Moura, Signal Processing, IEEE Transactions On 56, 35723585 (2008).
http://dx.doi.org/10.1109/TSP.2008.925261
12.
12. M. Puschel and J. M. F. Moura, IEEE Transactions on Signal Processing 56, 35863599 (2008).
http://dx.doi.org/10.1109/TSP.2008.925259
13.
13. D. Puschel and J. M. F. Moura, IEEE Transactions on Signal Processing 56, 15021521 (2008).
http://dx.doi.org/10.1109/TSP.2007.907919
14.
14. M. Puschel and J. M. F. Moura, IEEE Transactions on Signal Processing 56, 35723585 (2008).
http://dx.doi.org/10.1109/TSP.2008.925261
15.
15. M. Puschel and M. Rotteler, IEEE Transactions on Image Processing 16, 15061521 (2007).
http://dx.doi.org/10.1109/TIP.2007.896626
16.
16. M. Puschel and M. Rtteler, Applicable Algebra in Engineering, Communications and Computing 19, 259292 (2008).
http://dx.doi.org/10.1007/s00200-008-0077-x
17.
17. R. Rabenstein, P. Steffen, and S. Spors, Signal Processing 86, 13411351 (2006).
http://dx.doi.org/10.1016/j.sigpro.2005.10.001
18.
18. N. Baddour, J. Opt. Soc. Am. A 27, 21442155 (2010).
http://dx.doi.org/10.1364/JOSAA.27.002144
19.
19. N. Baddour, J. Opt. Soc. Am. A 26, 17681778 (2009).
http://dx.doi.org/10.1364/JOSAA.26.001767
20.
20. E. Kreyszig, Advanced Engineering Mathematics (John Wiley and Sons, New York, 1993).
21.
21. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1964).
22.
22. G. Arfken and H. Weber, Mathematical Methods for Physicists (Elsevier Academic Press, New York, 2005).
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3596359
Loading
/content/aip/journal/adva/1/2/10.1063/1.3596359
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3596359
2011-05-24
2016-09-28

Abstract

Many important physical phenomena are described by wave or diffusion-wave type equations. Since these equations are linear, it would be useful to be able to use tools from the theory of linear signals and systems in solving related forward or inverse problems. In particular, the transform domain signal description from linear system theory has shown concrete promise for the solution of problems that are governed by a multidimensional wave field. The aim is to develop a unified framework for the description of wavefields via multidimensional signals. However, certain preliminary mathematical results are crucial for the development of this framework. This first paper on this topic thus introduces the mathematical foundations and proves some important mathematical results. The foundation of the framework starts with the inhomogeneous Helmholtz or pseudo-Helmholtz equation, which is the mathematical basis of a large class of wavefields. Application of the appropriate multi-dimensional Fourier transform leads to a transfer function description. To return to the physical spatial domain, certain mathematical results are necessary and these are presented and proved here as six fundamental theorems. These theorems are crucial for the evaluation of a certain class of improper integrals which arise in the evaluation of inverse multi-dimensional Fourier and Hankel transforms, upon which the framework is based. Subsequently, applications of these theorems are demonstrated, in particular for the derivation of Green's functions in different coordinate systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3596359.html;jsessionid=BrXEEs-DL8pekekegr6V5UI6.x-aip-live-06?itemId=/content/aip/journal/adva/1/2/10.1063/1.3596359&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/2/10.1063/1.3596359&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/2/10.1063/1.3596359'
Right1,Right2,Right3,