Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/2/10.1063/1.3598408
1.
1. F. Verstraete, V. Murg, and J. I. Cirac, Advances in Physics 57, 143 (2008).
http://dx.doi.org/10.1080/14789940801912366
2.
2. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, 1989).
3.
3. W. A. Lester Jr., L. Mitas, and B. Hammond, Chem. Phys. Lett. 478, 1 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.06.095
4.
4. R. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
http://dx.doi.org/10.1007/BF02650179
5.
5. S. Lloyd, Science 273, 1073 (1996).
http://dx.doi.org/10.1126/science.273.5278.1073
6.
6. D. A. Lidar and H. Wang, Phys. Rev. E 59, 2429 (1999).
http://dx.doi.org/10.1103/PhysRevE.59.2429
7.
7. R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys. Rev. A 65, 042323 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.042323
8.
8. C. Negrevergne, R. Somma, G. Ortiz, E. Knill, and R. Laflamme, Phys. Rev. A 71, 032344 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.032344
9.
9. A. Aspuru-Guzik, A. D. Dutoi, P. Love, and M. Head-Gordon, Science 309, 1704 (2005).
http://dx.doi.org/10.1126/science.1113479
10.
10. K. R. Brown, R. J. Clark, and I. L. Chuang, Phys. Rev. Lett. 97, 050504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.050504
11.
11. B. P. Lanyon, J. D. Whitfield, G. G. Gillet, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, Nature Chemistry 2, 106 (2009).
http://dx.doi.org/10.1038/nchem.483
12.
12. J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Molecular Physics 109, 735 (2010), arXiv:1001.3855.
http://dx.doi.org/10.1080/00268976.2011.552441
13.
13. X. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, ArXiv e-prints(Aug. 2010), arXiv:arXiv:1008.4116 [quant-ph]
14.
14. G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 118, 8551 (2003).
http://dx.doi.org/10.1063/1.1574318
15.
15. C. R. Clark, T. S. Metodi, S. D. Gasster, and K. R. Brown, Phys. Rev. A 79, 062314 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.062314
16.
16. A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schaetz, Nature Physics 4, 757 (2008).
http://dx.doi.org/10.1038/nphys1032
17.
17. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. F. Roos, Nature 463, 68 (2009), arXiv:0909.0674.
http://dx.doi.org/10.1038/nature08688
18.
18. A. M. Childs, E. Farhi, and J. Preskill, Phys. Rev. A 65, 012322 (2001).
http://dx.doi.org/10.1103/PhysRevA.65.012322
19.
19. M. H. S. Amin, P. J. Love, and C. J. S. Truncik, Phys. Rev. Lett. 100, 060503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.060503
20.
20. J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 35, 1070 (2006).
http://dx.doi.org/10.1137/S0097539704445226
21.
21. R. Oliveira and B. M. Terhal, Quant. Inf. Comp. 8, 0900 (2008), arXiv:quant-ph/0504050v6.
22.
22. J. D. Biamonte and P. J. Love, Phys. Rev. A 78, 012352 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.012352
23.
23. J. D. Biamonte, Phys. Rev. A 77, 052331 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.052331
24.
24. J. Waugh, L. Huber, and U. Haeberlen, Phys. Rev. Lett. 20, 180 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.180
25.
25. S. Bravyi, D. P. DiVincenzo, D. Loss, and B. M. Terhal, Phys. Rev. Lett. 101, 070503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.070503
26.
26. Supporting material, arXiv:1002.0368.
27.
27. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by adiabatic evolution,” (2000), arXiv:quant-ph/0001106.
28.
28. D. Bacon and S. T. Flammia, Phys. Rev. Lett. 103, 120504 (Sep 2009).
http://dx.doi.org/10.1103/PhysRevLett.103.120504
29.
29. I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, L. Frunzio, M. Metcalfe, C. Rigetti, R. J. Schoelkopf, M. H. Devoret, D. Vion, and D. Esteve, Phys. Rev. Lett. 94, 027005 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.027005
30.
30. N. Ramsey, Molecular Beams (Oxford University Press, 1963).
31.
31. A. Kitaev, “Quantum measurements and the Abelian stabilizer problem,” (1995), arXiv:quant-ph/9511026.
32.
32. S. P. Jordan, E. Farhi, and P. W. Shor, Phys. Rev. A 74, 052322 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.052322
33.
33. D. A. Lidar, Phys. Rev. Lett. 100, 160506 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.160506
34.
34. M. H. S. Amin, D. V. Averin, and J. A. Nesteroff, Phys. Rev. A 79, 022107 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.022107
35.
35. H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, 2002).
36.
36. A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and J. S. Tsai, Science 316, 723 (2007).
http://dx.doi.org/10.1126/science.1141324
37.
37. I. J. Crosson, D. Bacon, and K. R. Brown, Phys. Rev. E 82, 031106 (Sep. 2010), arXiv:arXiv:1006.4388 [cond-mat.stat-mech].
http://dx.doi.org/10.1103/PhysRevE.82.031106
39.
39. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, SIAM J. Computing 37, 166 (2007).
http://dx.doi.org/10.1137/S0097539705447323
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3598408
Loading
/content/aip/journal/adva/1/2/10.1063/1.3598408
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3598408
2011-05-27
2016-09-27

Abstract

In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3598408.html;jsessionid=cx9Y4N6aPTa4dM4GIvQ6ziuO.x-aip-live-02?itemId=/content/aip/journal/adva/1/2/10.1063/1.3598408&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/2/10.1063/1.3598408&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/2/10.1063/1.3598408'
Right1,Right2,Right3,