1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Hidden temporal order unveiled in stock market volatility variance
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3598412
1.
1. X. Gabaix, P. Gopikrishnan, V. Plerou and H. Eugene Stanley, Journal of Economic Dynamics and Control 32 (1), 303319 (2008).
http://dx.doi.org/10.1016/j.jedc.2007.01.031
2.
2. D. Horvath, M. Gmitra and Z. Kuscsik, Physica A: Statistical Mechanics and its Applications 361 (2), 589605 (2006).
http://dx.doi.org/10.1016/j.physa.2005.06.067
3.
3. T. Kaizoji, S. Bornholdt and Y. Fujiwara, Physica A: Statistical Mechanics and its Applications 316 (1-4), 441452 (2002).
http://dx.doi.org/10.1016/S0378-4371(02)01216-5
4.
4. F. Lillo and R. N. Mantegna, European Physical Journal B 20 (4), 503509 (2001).
http://dx.doi.org/10.1007/s100510170229
5.
5. F. Michael and M. D. Johnson, Physica A: Statistical Mechanics and its Applications 320, 525534 (2003).
http://dx.doi.org/10.1016/S0378-4371(02)01558-3
6.
6. J. D. Noh, Physical Review E 61 (5), 59815982 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.5981
7.
7. J.-S. Yang, S. Chae, W.-S. Jung and H.-T. Moon, Physica A: Statistical Mechanics and its Applications 363 (2), 377382 (2006).
http://dx.doi.org/10.1016/j.physa.2005.12.039
8.
8. R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics: Correlation and Complexity in Finance. (Cambridge University Press, Cambridge, UK, 2000).
9.
9. M. F. M. Osborne, Operations Research 7, 145173 (1959).
http://dx.doi.org/10.1287/opre.7.2.145
10.
10. P. Gopikrishnan, V. Plerou, Y. Liu, L. A. N. Amaral, X. Gabaix and H. E. Stanley, Physica A: Statistical Mechanics and its Applications 287 (3-4), 362373 (2000).
http://dx.doi.org/10.1016/S0378-4371(00)00375-7
11.
11. S. Jaroszewicz, M. C. Mariani and M. Ferraro, Physica A: Statistical Mechanics and its Applications 355 (2-4), 461474 (2005).
http://dx.doi.org/10.1016/j.physa.2005.04.003
12.
12. M. Levy and S. Solomon, Physica A 242 (1-2), 9094 (1997).
http://dx.doi.org/10.1016/S0378-4371(97)00217-3
13.
13. R. N. Mantegna, Physica A 179 (2), 232242 (1991).
http://dx.doi.org/10.1016/0378-4371(91)90061-G
14.
14. R. N. Mantegna and H. E. Stanley, Journal of Statistical Physics 89 (1-2), 469479 (1997).
http://dx.doi.org/10.1007/BF02770777
15.
15. M. C. Mariani, J. D. Libbin, V. Kumar Mani, M. P. Beccar Varela, C. A. Erickson and D. J. Valles-Rosales, Physica A: Statistical Mechanics and its Applications 387 (5-6), 12731282 (2008).
http://dx.doi.org/10.1016/j.physa.2007.10.064
16.
16. Z. Palagyi and R. N. Mantegna, Physica A 269 (1), 132139 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00087-4
17.
17. V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral and H. E. Stanley, Physica A: Statistical Mechanics and its Applications 279 (1-4), 443456 (2000).
http://dx.doi.org/10.1016/S0378-4371(00)00010-8
18.
18. H. E. Stanley, L. A. Nunes Amaral, X. Gabaix, P. Gopikrishnan and V. Plerou, Physica A: Statistical Mechanics and its Applications 302 (1-4), 126137 (2001).
http://dx.doi.org/10.1016/S0378-4371(01)00504-0
19.
19. W. K. Bertram, Physica A: Statistical Mechanics and its Applications 341, 533546 (2004).
http://dx.doi.org/10.1016/j.physa.2004.04.132
20.
20. D. Canning, L. A. N. Amaral, Y. Lee, M. Meyer, and H. E. Stanley, Economics Letters 60, 335341 (1998).
http://dx.doi.org/10.1016/S0165-1765(98)00121-9
21.
21. Y. Fujiwara and H. Fujisaka, Physica A: Statistical Mechanics and its Applications 294 (3-4), 439446 (2001).
http://dx.doi.org/10.1016/S0378-4371(01)00135-2
22.
22. P. Gopikrishnan, V. Plerou, X. Gabaix, L. A. N. Amaral and H. E. Stanley, Physica A: Statistical Mechanics and its Applications 299 (1-2), 137143 (2001).
http://dx.doi.org/10.1016/S0378-4371(01)00288-6
23.
23. Y. H. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C. K. Peng and H. E. Stanley, Physical Review E 60 (2), 13901400 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.1390
24.
24. R. Allez and J. P. Bouchaud, (1009.4785) (2010).
25.
25. K. Yamasaki, L. Muchnik, S. Havlin, A. Sunde and H. E. Stanley, PNAS 102 (26), 94249428 (2005).
http://dx.doi.org/10.1073/pnas.0502613102
26.
26. C. Exchange, White Paper (available at www.cboe.com/VIX). Chicago (2009).
27.
27. Y. Shapira, D. Y. Kenett and E. Ben-Jacob, The European Physical Journal B 72 (4), 657669 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00384-y
28.
28. D. Y. Kenett, Y. Shapira, A. Madi, S. Bransburg-Zabary, G. Gur-Gershgoren and E. Ben Jacob, PLoS ONE 6 (4), e19378 (2011).
http://dx.doi.org/10.1371/journal.pone.0019378
29.
29. D. Y. Kenett, Y. Shapira, A. Madi, S. Bransburg-Zabary, G. Gur-Gershgoren and E. Ben-Jacob, AUCO Czech Economic Review 4 (1) (2010).
30.
30. W. Cochran, Sampling techniques. (Wiley-India, 2009).
31.
31. E. Cho, M. Cho and J. Eltinge, International Journal of Pure and Applied Mathematics 21 (3), 389 (2005).
32.
32. E. Hulata, I. Baruchi, S. R, Y. Shapira and B.-J. E, Physical Review Letters 92 (19) (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.198105
33.
33. R. Segev, M. Benveniste, E. Hulata, N. Cohen, A. Palevski, E. Kapon, Y. Shapira and E. Ben-Jacob, Physical Review Letters 88 (11), 118102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.118102
34.
34. V. Volman, I. Baruchi, E. Persi and E. Ben-Jacob, Physica A: Statistical Mechanics and its Applications 335 (1-2), 249278 (2004).
http://dx.doi.org/10.1016/j.physa.2003.11.015
35.
35. E. Persi, D. Horn, V. Volman, R. Segev and E. Ben-Jacob, Neural computation 16 (12), 25772595 (2004).
http://dx.doi.org/10.1162/0899766042321823
36.
36. V. Volman, I. Baruchi and E. Ben-Jacob, Experimental Chaos 742, 197209 (2004).
37.
37. E. Persi, D. Horn, R. Segev, E. Ben-Jacob and V. Volman, Neurocomputing 58, 179184 (2004).
http://dx.doi.org/10.1016/j.neucom.2004.01.040
38.
38. T. Preis and H. E. Stanley, Journal of Statistical Physics 138 (1), 431446 (2010).
http://dx.doi.org/10.1007/s10955-009-9914-y
39.
39. T. Preis, J. J. Schneider and H. E. Stanley, Proceedings of the National Academy of Sciences (2011).
40.
40. H. E. Stanley, L. A. N. Amaral, P. Gopikrishnan and V. Plerou, Physica A: Statistical Mechanics and its Applications 283 (1-2), 3141 (2000).
http://dx.doi.org/10.1016/S0378-4371(00)00256-9
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3598412
Loading
/content/aip/journal/adva/1/2/10.1063/1.3598412
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3598412
2011-05-27
2015-01-25

Abstract

When analyzed by standard statistical methods, the time series of the daily return of financial indices appear to behave as Markov random series with no apparent temporal order or memory. This empirical result seems to be counter intuitive since investor are influenced by both short and long term past market behaviors. Consequently much effort has been devoted to unveil hidden temporal order in the market dynamics. Here we show that temporal order is hidden in the series of the variance of the stocks volatility. First we show that the correlation between the variances of the daily returns and means of segments of these time series is very large and thus cannot be the output of random series, unless it has some temporal order in it. Next we show that while the temporal order does not show in the series of the daily return, rather in the variation of the corresponding volatility series. More specifically, we found that the behavior of the shuffled time series is equivalent to that of a random time series, while that of the original time series have large deviations from the expected random behavior, which is the result of temporal structure. We found the same generic behavior in 10 different stock markets from 7 different countries. We also present analysis of specially constructed sequences in order to better understand the origin of the observed temporal order in the market sequences. Each sequence was constructed from segments with equal number of elements taken from algebraic distributions of three different slopes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3598412.html;jsessionid=7k42ng1la5n1h.x-aip-live-06?itemId=/content/aip/journal/adva/1/2/10.1063/1.3598412&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hidden temporal order unveiled in stock market volatility variance
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3598412
10.1063/1.3598412
SEARCH_EXPAND_ITEM