Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. W. Hell, Far-field optical nanoscopy, Science 316, 1153 (2007).
2. M. J. Rust, M. Bates and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nature Meth., 3, 793 (2006).
3. Partha P. Mondal and A. Diaspro, Lateral resolution improvement in two-photon excitation microscopy by aperture engineering, Optics Comm., 281, 1855 (2008).
4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz and H. F. Hess, Imaging Intracellular Fluorescent Proteins at Nanometer Resolution, Science 313, 1642 (2006).
5. M. G. L. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy, Jl. Microsc. 198, 82 (2000).
6. R. Heintzmann, T. Jovin and C. Cremer, Saturated patterned excitation microscopya concept for optical resolution improvement, J. Opt. Soc. Am. A 19, 1599 (2002).
7. G. Toraldo di Francia, Super-gain antennas and optical resolving power, Nuovo Cimento 9 (Suppl. 9) 426 (1952).
8. M. A. A. Neil, R. Juskaitis, T. Wilson and Z. J. Laczik, Optimized pupil-plane filters for confocal microscope point-spread function engineering, Opt. Lett. 25, 245 (2000).
9. Partha P. Mondal, Multiple excitation nano-spot generation and confocal detection for far-field microscopy, Nanoscale 2, 381 (2010).
10. Partha P. Mondal, Multi-Focal Multiphoton Excitation Fluorescence Microscopy, Rev. Sci. Instrum. 80, 096104 (2009).
11. G. M. P. van Kempen, L. J. van Vliet, P. J. Verveer, and H. T. M. van der Voort, A quantitative comparison of image restoration methods for confocal microscopy, J. Microsc. 185, 354 (1997).
12. M. Schrader, S. W. Hell and H. T. M. van der Voort, Three-dimensional superresolution with a 4Pi confocal microscope using image restoration, J. Appl. Phys. 84, 4033 (1998).
13. A. Diaspro, S. Annunziata and M. Robello, Single-pinhole confocal imaging of sub-resolution sparse objects using experimental point spread function and image restoration, Microsc. Res. Tech. 51, 464 (2000).<464::AID-JEMT9>3.0.CO;2-D
14. Partha P. Mondal, G. Vicidomini and A. Diaspro, Markov random field aided Bayesian approach for image reconstruction in confocal microscopy, J. Appl. Phys. 102, 044701 (2007).
15. Partha P. Mondal, G. Vicidomini and A. Diaspro, Image reconstruction for multiphoton fluorescence microscopy, Appl. Phys. Lett. 92, 103902 (2008).
16. C. Cremer and T. Cremer, Considerations on a laser-scanning-microscope with high resolution and depth of field, Microscopica Acta 81, 31 (1978).
17. S. W. Hell, E. H. K. Stelzer, S. Lindek an C. Cremer, Confocal microscopy with enhanced detection aperture: type B 4Pi-confocal microscopy, Optics Letters 19, 222 (1994).
18. S. W. Hell, R. Schmidt and A. Egner, Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses, Nature Photonics 3, 381 (2009).
19. B. Richards and E. Wolf, Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System, Proc. Roy. Soc. A 253, 358 (1959).
20. A. Boivin and E. Wolf, Electromagnetic field in the neighborhood of the focus of a coherent beam, Phys. Rev. 138, B1561 (1965).
21. Partha P. Mondal, S. Mandal and A. Diaspro, Dynamic point spread function for single and muti-photon microscopy, Rev. Sci. Instrum. 81, 046103 (2010).
22. E. Abbe, Gesammelte Abhandlungen, G. Fischer Verlag, Jena 150 (1904).

Data & Media loading...


Article metrics loading...



We propose fundamental improvements in three-dimensional (3D) resolution of multiple excitation spot optical microscopy. The excitation point spread function (PSF) is generated by two interfering counter-propagating depth-of-focus beams along the optical axis. Detection PSF is obtained by coherently interfering the emitted fluorescent light (collected by both the objectives) at the detector.System PSF shows upto 14-fold reduction in focal volume as compared to confocal, and almost 2-fold improvement in lateral resolution. Proposed PSF has the ability to simultaneously excite multiple 3D-spots of sub-femtoliter volume. Potential applications are in fluorescence microscopy and nanobioimaging.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd