Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/2/10.1063/1.3601872
1.
1.T. R. Albrecht, P. Grutter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).
http://dx.doi.org/10.1063/1.347347
2.
2.G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.930
3.
3.J. E. Sader and S. P. Jarvis, Phys. Rev. B 74, 195424 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195424
4.
4.K. Kobayashi, H. Yamada, and K. Matsuhige, Rev. Sci. Instrum. 82, 033702 (2011)
http://dx.doi.org/10.1063/1.3557416
5.
5.Y. Sugawara, N. Kobayashi, M. Kawakami, Y. J. Li, Y. Naitoh, and M. Kageshima, Appl. Phys. Lett. 90, 194104 (2007).
http://dx.doi.org/10.1063/1.2737907
6.
6.T. Fukuma, J. I. Kilpatrick, S. Jarvis, Rev. Sci. Instrum. 77, 123703 (2006)
http://dx.doi.org/10.1063/1.2405361
7.
7.G. C. Ratcliff, D. A. Erie, and R. Superfine, Appl. Phys. Lett. 72, 1911 (1998).
http://dx.doi.org/10.1063/1.121224
8.
8.K. Kimura, S. Ido, N. Oyabu, K. Kobayashi, Y. Hirata, T. Imai, and H. Yamada, J. Chem. Phys. 132, 19470 (2010).
http://dx.doi.org/10.1063/1.3408289
9.
9.T. Fukuma, K. Kobayashi, K. Matsushige, and H. Yamada, Appl. Phys. Lett. 87, 034101 (2005).
http://dx.doi.org/10.1063/1.1999856
10.
10.T. Fukuma, Y. Ueda, S. Yoshioka, and H. Asakawa, Phys. Rev. Lett. 104, 016101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.016101
11.
11.K. Kobayashi, H. Yamada, H. Itoh, T. Horiuchi, and K. Matsushige, Rev. Sci. Instr. 72, 4383 (2001).
http://dx.doi.org/10.1063/1.1416104
12.
12.V. Pini, B. Tiribilli, C. M. C. Gambi, and M. Vassalli, Phys. Rev. B 81, 054302 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.054302
13.
13.F. J. Giessibl, Appl. Phys. Lett. 78, 123 (2001).
http://dx.doi.org/10.1063/1.1335546
14.
14.J. E. Sader and S. P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004).
http://dx.doi.org/10.1063/1.1667267
15.
15.T. E. Schaffer, J. P. Cleveland, F. Ohnesorge, D. A. Walters, and P. K. Hansma, J. Appl. Phys. 80, 3622 (1996).
http://dx.doi.org/10.1063/1.363308
16.
16.R. Roger and S. V. Kalinin, Nanotechnology 21, 455705 (2010).
http://dx.doi.org/10.1088/0957-4484/21/45/455705
17.
17.J. P Cleveland, B. Anczykowski, A. E. Schmid, V. B. Elings, Appl. Phys. Lett. 72, 2613 (1998).
http://dx.doi.org/10.1063/1.121434
18.
18.J. E. Sader, J. Appl. Phys. 84, 64 (1998).
http://dx.doi.org/10.1063/1.368002
19.
19.J. Melcher, C. Carrasco, X. Xu, J. L. Carrascosa, J. Gómez-Herrero, P. J. de Pablo, and A. Raman, Proc. Natl. Acad. Sci. U.S.A 106, 13655 (2009).
http://dx.doi.org/10.1073/pnas.0902240106
20.
20.D. Martínez-Martín, C. Carrasco, R. Pérez, M. Mateu, J. Carrascosa, P. de Pablo, J. Gómez-Herrero, D. Kiracofe, J. Melcher, and A. Raman, under review (2011).
21.
21.W. Hofbauer, R. J. Ho, Hairulnizam R , N. N. Gosvami, and S. J. O’Shea, Phys. Rev. B 80, 134104 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.134104
22.
22.M. T. Clark, J. E. Sader, J. P. Cleveland, and M. R. Paul, Phys. Rev. E 81, 046306 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.046306
23.
23.J. Melcher, S. Hu, and A. Raman, Appl. Phys. Lett. 91, 053101 (2007).
http://dx.doi.org/10.1063/1.2767173
24.
24.M. R. Paul and M. C. Cross, Phys. Rev. Lett. 92, 235501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.235501
25.
25.M. T. Clark, J. E. Sader, J. P. Cleveland, and M. R. Paul, Phys. Rev. E 81, 046306 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.046306
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3601872
Loading
/content/aip/journal/adva/1/2/10.1063/1.3601872
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3601872
2011-06-09
2016-09-28

Abstract

In attempting to perform frequency modulationatomic force microscopy (FM-AFM) in liquids, a non-flat phase transfer function in the self-excitation system prevents proper tracking of the cantilever natural frequency. This results in frequency-and-phase modulation atomic force microscopy (FPM-AFM) which lies in between phase modulationatomic force microscopy (PM-AFM) and FM-AFM. We derive the theory necessary to recover the conservative force and damping in such a situation, where standard FM-AFM theory no longer applies. Although our recovery procedure applies to all cantilever excitation methods in principle, its practical implementation may be difficult, or even impossible, if the cantilever is driven piezoacoustically. Specifically, we contrast the piezoacoustic excitation method to the photothermal method in the context of force spectroscopy of hydration structures at the mica-water interface. The results clearly demonstrate that photothermal excitation is superior to piezoacoustic excitation, as it allows for accurate quantitative interpretation of the acquired data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3601872.html;jsessionid=zM0CJlLZr-ExxXtZW7tqAr8h.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3601872&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/2/10.1063/1.3601872&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/2/10.1063/1.3601872'
Right1,Right2,Right3,