Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. P. Agarwal, Fiber Optic Communication Systems, (John Wiley, NY, 2002);
1.V. Alwyn, Fiber Optic Technologies (Cisco Press, 2004);
1.Encyclopedia of Laser Physics & Technology, (Virtual Web-Library, RP Photonics Consulting).
2. B. J. Eggleton et al., J. Lightwave Tech. 18, 1418 (2000);
2.X. F. Chen et al., Photonics. Tech. Lett. IEEE 12, 1013 (2000);
2.F. Poletti et al., Photonics. Tech. Lett. IEEE 20, 1449 (2008).
3. L. F. Mollenauer et al., R. H. Stolen and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980);
3.A. Hasegawa and F. D. Tappert, Appl. Phys. Lett. 23, 142 (1973);
3.A. Hasegawa, Optical Fiber Solitons (Springer, Berlin, 1989)
4. G. P. Agarwal, Nonlinear Fiber Optics (Acad. Press, N.Y., 2007).
5. F. M. Mitshke and L. F. Mollenauer, Opt. Lett. 11, 657 (1986).
6. S. L. McCall and E. L. Hahn, Phys. Rev. Lett. 18, 908 (1967);
6.S. L. McCall and E. L. Hahn, Phys. Rev. 183, 457 (1969).
7. G. L. Lamb Jr., Rev. Mod. Phys. 43, 99 (1971).
8. A. I. Maimistov and E. A. Manyakin, Sov. Phys. JETP 58, 685 (1983).
9. M. Nakazawa, E. Yamada and H. Kubota, Phys. Rev. Lett. 66, 2625 (1991).
10. M. Nakazawa, E. Yamada and H. Kubota, Phys. Rev. A 44, 5973 (1991).
11. M. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Stud. Appl. Math. 53, 294 (1974);
11.M. Ablowitz and H. Segur, Solitons and Inverse Scattering Transforms (SIAM, Philadelphia, 1981);
11.S. Novikov et al., Theory of Solitons (Consultants Bureau, NY, 1984).
12. A. Kundu, J. Math Phys. 50, 102702 (2009).
13. Comparing NLS-SIT soliton (4.4) in Ref. 10 with our (13) we identify pulse delay δ with our v, phase rotation α with our ω, inverse soliton speed with our vsit and 2η2 with our ωsit at k = 0.
14. S. Kakei and J Satsuma, J. Phys. Soc. Jpn. 63, 885 (1994).
15. K. Porsezian and K. Nakkeeran, Phys. Rev. Lett. 74, 2941 (1995).

Data & Media loading...


Article metrics loading...



Fiber guided optical signal propagating in a Erbium doped nonlinear resonant medium is known to produce cleaner solitonic pulse, described by the self induced transparency (SIT) coupled to nonlinear Schrödinger equation. We discover two new possibilities hidden in its integrable structure, for amplification and control of the optical pulse. Using the variable soliton width permitted by the integrability of this model, the broadening pulse can be regulated by adjusting the initial population inversion of the dopant atoms. The effect can be enhanced by another innovative application of its constrained integrable hierarchy, proposing a system of multiple SIT media. These theoretical predictions are workable analytically in details, correcting a well known result.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd