1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3605717
1.
1. K. Govender, D. S. Boyle, P. O’Brien, D. Binks, D. West and D. Coleman, Adv. Mater. 14, 1221 (2002).
http://dx.doi.org/10.1002/1521-4095(20020903)14:17<1221::AID-ADMA1221>3.0.CO;2-1
2.
2. O. Lupan, T. Pauporté and B. Viana, Adv. Mater. 22, 3298 (2010).
http://dx.doi.org/10.1002/adma.201000611
3.
3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2001).
http://dx.doi.org/10.1126/science.1060367
4.
4. M. Lorenz, E. M. Kaidashev, A. Rahm, Th. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth and M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005).
http://dx.doi.org/10.1063/1.1898433
5.
5. B. Q. Cao, M. Lorenz, A. Rahm, H. von Wenckstern, C. Czekalla, J. Lenzner, G. Benndorf and M. Grundmann, Nanotechnology 18, 455707 (2007).
http://dx.doi.org/10.1088/0957-4484/18/45/455707
6.
6. S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder and Z. L. Wang, Nano Lett. 9 (11), 3877 (2009).
http://dx.doi.org/10.1021/nl902067a
7.
7. W. Z. Liu, Y. Liang, H. Y. Xu, L. L. Wang, X. T. Zhang, Y. C. Liu and S. K. Hark, J. Phys. Chem. C 114, 16148 (2010).
http://dx.doi.org/10.1021/jp102395t
8.
8. L. C. Tien, S. J. Pearton, D. P. Norton and F. Ren, J. Mater. Sci. 43, 6925 (2008).
http://dx.doi.org/10.1007/s10853-008-2988-0
9.
9. Y. H. Tong, Y. C. Liu, C. L. Shao and R. X. Mu, Appl. Phys. Lett. 88, 123111 (2006).
http://dx.doi.org/10.1063/1.2188386
10.
10. H. Y. Xu, Y. C. Liu, J. G. Ma, Y. M. Luo, Y. M. Lu, D. Z. Shen, J. Y. Zhang, X. W. Fan and R. Mu, J. Phys.: Condens. Matter 16, 5143 (2004).
http://dx.doi.org/10.1088/0953-8984/16/28/032
11.
11. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).
http://dx.doi.org/10.1021/jp993327z
12.
12. F. A. Kroger and H. J. Vink, J. Chem. Phys. 22, 250 (1954).
http://dx.doi.org/10.1063/1.1740044
13.
13. Y. F. Chen, K. M. Bagnall, H. J. Ko, K. T. Park, Z. Zhu and T. Yao, J. Appl. Phys. 84, 3912 (1998).
http://dx.doi.org/10.1063/1.368595
14.
14. E. Przeździecka, E. Kamińska, I. Pasternak, A. Piotrowska and J. Kossut, Phys. Rev. B 76, 193303 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.193303
15.
15. H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, J. Appl. Phys. 91, 6457 (2002).
http://dx.doi.org/10.1063/1.1467627
16.
16. X. Gu, K. Huo, G. Qian, J. Fu and P. K. Chu, Appl. Phys. Lett. 93, 203117 (2008).
http://dx.doi.org/10.1063/1.3033823
17.
17.(a) V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 85, 5971 (2004);
http://dx.doi.org/10.1063/1.1835992
17.(b) V. A. Fonoberov and A. A. Balandin, Phys. Rev. B 70, 195410 (2004);
http://dx.doi.org/10.1103/PhysRevB.70.195410
17.(c) V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 86, 226101 (2005).
http://dx.doi.org/10.1063/1.1942632
18.
18. V. A. Fonoberov, K. A. Alim and A. A. Balandin, Phys. Rev. B 73, 165317 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.165317
19.
19. S. J. Chen, G. R. Wang and Y. C. Liu, J. Lumin. 129, 340 (2009).
http://dx.doi.org/10.1016/j.jlumin.2008.10.018
20.
20. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies and P. Gibart, J. Appl. Phys. 86, 3721 (1999).
http://dx.doi.org/10.1063/1.371242
21.
21. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strabburg, M. Dworzak, U. Haboeck and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004).
http://dx.doi.org/10.1002/pssb.200301962
22.
22. J. Yoo, Y. J. Hong, H. S. Jung, Y.-J. Kim, C.-H. Lee, J. Cho, Y.-J. Doh, L. S. Dang, K. H. Park and G.-C. Yi, Adv. Funct. Mater. 19, 1601 (2009).
http://dx.doi.org/10.1002/adfm.200801123
23.
23. D. C. Look and B. Claflin, Phys. Status Solidi B 241, 624 (2004).
http://dx.doi.org/10.1002/pssb.200304271
24.
24. Y. P. Varshni, Physica 34, 149 (1967).
http://dx.doi.org/10.1016/0031-8914(67)90062-6
25.
25. P. Misra, T. K. Sharma and L. M. Kukreja, Superlattice Microst. 42, 212 (2007).
http://dx.doi.org/10.1016/j.spmi.2007.04.039
26.
26. C. Y. Liu, H. Y. Xu, L. Wang, X. H. Li and Y. C. Liu, J. Appl. Phys. 106, 073518 (2009).
http://dx.doi.org/10.1063/1.3240328
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3605717
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Tilted-view SEM images of the series I samples grown at (a) 600, (b) 700, (c) 800, (d) 850 °C and the fixed pressure of 800 Pa. The scale bars in all images are 1 um. Panel (e) shows the variations of diameter, length, and aspect ratio of ZnO NWs with the substrate temperature.

Image of FIG. 2.

Click to view

FIG. 2.

Tilted-view SEM images of the series II samples grown at (a) 600, (b) 700, (c) 800, (d) 850 Pa and the same substrate temperature of 700 oC. The scale bars in all images are 500 nm. (e) the diameter, length, and aspect ratio of ZnO NWs as a function of the growth pressure.

Image of FIG. 3.

Click to view

FIG. 3.

Tilted-view SEM images of the NWs grown at different laser repetition frequencies of (a) 10 Hz and (b) 5 Hz with the scale bar of 1 um. The growth pressure and temperature were fixed at 800 Pa and 850 oC.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Typical TEM image of a single ZnO NW, the inset shows its ED pattern along the wurtzite zone axis. (b) Lattice-resolved HRTEM image of the ZnO NW. (c), (d) Typical EDX and XRD patterns of the NWs grown at 700 oC and 800 Pa.

Image of FIG. 5.

Click to view

FIG. 5.

(a) The RT PL spectra of the series I samples. (b) The PL spectra at different temperatures varying from 10 to 290 K. (c) and (d) The D0X emission intensity and FX emission energy as a function of temperature. The solid curves are the best fits to the experimental data using the equation (1) and (4).

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3605717
2011-06-20
2014-04-21

Abstract

Single crystalline ZnOnanowires were fabricated on Si (100) substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescencespectrum of ZnOnanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3605717.html;jsessionid=1ppk50f263lbf.x-aip-live-02?itemId=/content/aip/journal/adva/1/2/10.1063/1.3605717&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3605717
10.1063/1.3605717
SEARCH_EXPAND_ITEM