Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Govender, D. S. Boyle, P. O’Brien, D. Binks, D. West and D. Coleman, Adv. Mater. 14, 1221 (2002).<1221::AID-ADMA1221>3.0.CO;2-1
2. O. Lupan, T. Pauporté and B. Viana, Adv. Mater. 22, 3298 (2010).
3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292, 1897 (2001).
4. M. Lorenz, E. M. Kaidashev, A. Rahm, Th. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth and M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005).
5. B. Q. Cao, M. Lorenz, A. Rahm, H. von Wenckstern, C. Czekalla, J. Lenzner, G. Benndorf and M. Grundmann, Nanotechnology 18, 455707 (2007).
6. S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder and Z. L. Wang, Nano Lett. 9 (11), 3877 (2009).
7. W. Z. Liu, Y. Liang, H. Y. Xu, L. L. Wang, X. T. Zhang, Y. C. Liu and S. K. Hark, J. Phys. Chem. C 114, 16148 (2010).
8. L. C. Tien, S. J. Pearton, D. P. Norton and F. Ren, J. Mater. Sci. 43, 6925 (2008).
9. Y. H. Tong, Y. C. Liu, C. L. Shao and R. X. Mu, Appl. Phys. Lett. 88, 123111 (2006).
10. H. Y. Xu, Y. C. Liu, J. G. Ma, Y. M. Luo, Y. M. Lu, D. Z. Shen, J. Y. Zhang, X. W. Fan and R. Mu, J. Phys.: Condens. Matter 16, 5143 (2004).
11. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).
12. F. A. Kroger and H. J. Vink, J. Chem. Phys. 22, 250 (1954).
13. Y. F. Chen, K. M. Bagnall, H. J. Ko, K. T. Park, Z. Zhu and T. Yao, J. Appl. Phys. 84, 3912 (1998).
14. E. Przeździecka, E. Kamińska, I. Pasternak, A. Piotrowska and J. Kossut, Phys. Rev. B 76, 193303 (2007).
15. H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, J. Appl. Phys. 91, 6457 (2002).
16. X. Gu, K. Huo, G. Qian, J. Fu and P. K. Chu, Appl. Phys. Lett. 93, 203117 (2008).
17.(a) V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 85, 5971 (2004);
17.(b) V. A. Fonoberov and A. A. Balandin, Phys. Rev. B 70, 195410 (2004);
17.(c) V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 86, 226101 (2005).
18. V. A. Fonoberov, K. A. Alim and A. A. Balandin, Phys. Rev. B 73, 165317 (2006).
19. S. J. Chen, G. R. Wang and Y. C. Liu, J. Lumin. 129, 340 (2009).
20. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies and P. Gibart, J. Appl. Phys. 86, 3721 (1999).
21. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strabburg, M. Dworzak, U. Haboeck and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004).
22. J. Yoo, Y. J. Hong, H. S. Jung, Y.-J. Kim, C.-H. Lee, J. Cho, Y.-J. Doh, L. S. Dang, K. H. Park and G.-C. Yi, Adv. Funct. Mater. 19, 1601 (2009).
23. D. C. Look and B. Claflin, Phys. Status Solidi B 241, 624 (2004).
24. Y. P. Varshni, Physica 34, 149 (1967).
25. P. Misra, T. K. Sharma and L. M. Kukreja, Superlattice Microst. 42, 212 (2007).
26. C. Y. Liu, H. Y. Xu, L. Wang, X. H. Li and Y. C. Liu, J. Appl. Phys. 106, 073518 (2009).

Data & Media loading...


Article metrics loading...



Single crystalline ZnOnanowires were fabricated on Si (100) substrates by catalyst-free high-pressure pulsed laser deposition. It is found that the nanowires start to form when the substrate temperature and growth pressure exceed the critical values of 700 oC and 700 Pa, and their size strongly depends on these growth conditions. That is, the aspect ratio of the nanowires decreases with increasing temperature or decreasing pressure. Such a size dependence on growth conditions was discussed in terms of surface migration and scattering of ablated atoms. Room-temperature photoluminescencespectrum of ZnOnanowires shows a dominant near-band-edge emission peak at 3.28 eV and a visible emission band centered at 2.39 eV. Temperature-dependent photoluminescence studies reveal that the former consists of the acceptor-bound exciton and free exciton emissions; while the latter varies in intensity with the aspect ratio of the nanowires and is attributed to the surface-mediated deep level emission.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd