Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/2/10.1063/1.3608045
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.See, e.g., C. Soldano, A. Mahmood and E. Dujardin, Carbon, 48, 2127 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.01.058
3.
3. Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
http://dx.doi.org/10.1126/science.1184289
4.
4. C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, Nano Lett. 8, 2378 (2008).
http://dx.doi.org/10.1021/nl801225h
5.
5. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nature Photon. 4, 611 (2010), other references therein.
http://dx.doi.org/10.1038/nphoton.2010.186
6.
6. W. Xu, Y. P. Gong, L. W. Liu, H. Qin, and Y. L. Shi Nanoscale research Lett. 6, 250 (2011).
http://dx.doi.org/10.1186/1556-276X-6-250
7.
7. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Nature Phys. 4, 532 (2008).
http://dx.doi.org/10.1038/nphys989
8.
8. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
9.
9.See, e.g., A. Wixforth, J. P. Kotthaus, and G. Weimann, Phys. Rev. Lett. 56, 2104 (1986);
http://dx.doi.org/10.1103/PhysRevLett.56.2104
9.A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus, G. Weimann, and W. Schlapp, Phys. Rev. B 40, 7874 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.7874
10.
10. S. H. Simon, Phys. Rev. B 54, 13878 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.13878
11.
11. G. Gumbs, G. R. Azin, and M. Pepper, Phys. Rev. B 57, 1654 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1654
12.
12. G. R. Aizin, G. Gumbs, and M. Pepper, Phys. Rev. B 58, 10589 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.10589
13.
13. Godfrey Gumbs, G. R. Aizin, and M. Pepper, Phys. Rev. B 60, R13954 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R13954
14.
14. P. Thalmeier, B. Dóra, and K. Ziegler, Phys. Rev. B 81, 041409 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.041409
15.
15. R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh, and W. Wlodaski, Chem. Phys. Lett. 467, 344 (2009).
http://dx.doi.org/10.1016/j.cplett.2008.11.039
16.
16. W. Xu, H. M. Dong, L. L. Li, J. Q. Yao, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 82, 125304 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125304
17.
17. W. Xu, L. B. Lin, and C. S. Tang, J. Appl. Phys. 94, 3229 (2003)
http://dx.doi.org/10.1063/1.1599631
18.
18. K. Seeger, Semiconductor Physics, Springer Series in Solid-State Sciences Vol. 40 (Springer, New York, 1982).
19.
19. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat. Phys. 4, 377 (2008).
http://dx.doi.org/10.1038/nphys935
20.
20.See, e.g. Y. Takagaki, P. V. Santos, E. Wiebicke, O. Brandt, H.-P. Schönherr, K. H. Ploog, Appl. Phys. Lett. 81, 2538 (2002) and
http://dx.doi.org/10.1063/1.1509471
20.A. K. Pantazis, E. Gizeli, and G. Konstantinidis, Appl. Phys. Lett. 96, 194103 (2010)
http://dx.doi.org/10.1063/1.3427484
21.
21. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005)
http://dx.doi.org/10.1038/nature04233
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3608045
Loading
/content/aip/journal/adva/1/2/10.1063/1.3608045
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3608045
2011-06-23
2016-09-28

Abstract

We present a theoretical study on interactions of electrons in graphene with surface acoustic waves(SAWs). We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAWabsorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAWabsorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3608045.html;jsessionid=7SNUKhwubIC4lP7lXsouJq7b.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3608045&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/2/10.1063/1.3608045&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/2/10.1063/1.3608045'
Right1,Right2,Right3,