1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Patterning solution-processed organic single-crystal transistors with high device performance
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3608793
1.
1. Z. Bao and J. Locklin, Organic Field-Effect Transistors: Optical Science and Engineering Series (London, CRC Press, 2007)
2.
2. H. Klauk, Organic Electronics: Materials, Manufacturing, and Applications (Weinheim, Wiley-VCH Verlag GmbH, 2006)
3.
3. T. Hallam, M. J. Lee, N. Zhao, I. Nandhakunar, M. Kemerink, M. Heeney, I, McCulloch, and H. Sirringhaus, Phys. Rev. Lett. 103, 256803 (2009)
http://dx.doi.org/10.1103/PhysRevLett.103.256803
4.
4. E. Menard, V. Podzorov, S. H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers, Adv. Mater. 16, 2097 (2004).
http://dx.doi.org/10.1002/adma.200401017
5.
5. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004).
http://dx.doi.org/10.1126/science.1094196
6.
6. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).
http://dx.doi.org/10.1063/1.2711393
7.
7. O. D. Jurchescu, M. Popinciuc, B. J. van Wees, and T. T. M. Palstra, Adv. Mater. 19, 688 (2007).
http://dx.doi.org/10.1002/adma.200600929
8.
8. T. Hasegawa and J. Takeya, Sci. Technol. Adv. Mater. 10, 024314 (2009).
http://dx.doi.org/10.1088/1468-6996/10/2/024314
9.
9. S. Steudel, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett. 85, 5550 (2004).
http://dx.doi.org/10.1063/1.1832732
10.
10. S. de Vusser, S. Steudel, K. Myny, J. Genoe, and P. Heremans, Appl. Phys. Lett. 88, 103501 (2006).
http://dx.doi.org/10.1063/1.2182008
11.
11. Q. X. Tang, H. X. Li, Y. B. Song, W. Xu, W. P. Hu, L. Jiang, Y. Q. Liu, X. K. Wang, and D. B. Zhu, Adv. Mater. 18, 3010 (2006).
http://dx.doi.org/10.1002/adma.200600542
12.
12. Q. X. Tang, H. X. Li, M. He, W. P. Hu, C. M. Liu, K. Q. Chen, C. Wang, Y. Q. Liu, and D. B. Zhu, Adv. Mater. 18, 65 (2006).
http://dx.doi.org/10.1002/adma.200501654
13.
13. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. H. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. N. Bao, Nature 444, 913 (2006).
http://dx.doi.org/10.1038/nature05427
14.
14. Q. X. Tang, H. X. Li, Y. L. Liu, and W. P. Hu, J. Am. Chem. Soc. 128, 14634 (2006).
http://dx.doi.org/10.1021/ja064476f
15.
15. Y. L. Liu, H. X. Li, D. Y. Tu, Z. Y. Ji, C. S. Wang, Q. X. Tang, M. Liu, W. P. Hu, Y. Q. Liu, and D. B. Zhu, J. Am. Chem. Soc. 128, 12917 (2006).
http://dx.doi.org/10.1021/ja0636183
16.
16. K. Xiao, I. N. Ivanov, A. A. Puretzky, Z. Q. Liu, and D. B. Geohegan, Adv. Mater. 18, 2184 (2006).
http://dx.doi.org/10.1002/adma.200600621
17.
17. K. Xiao, J. Tao, Z. W. Pan, A. A. Puretzky, I. N. Ivanov, S. J. Pennycook, and D. B. Geohegan, Angew. Chem. Int. Ed. 46, 2650 (2007).
http://dx.doi.org/10.1002/anie.200604397
18.
18. S. H. Liu, W. M. Wang, A. L. Briseno, S. C. B. Mannsfeld, and Z. N. Bao, Adv. Mater. 21, 1217 (2009).
http://dx.doi.org/10.1002/adma.200802202
19.
19. A. L. Briseno, M. Roberts, M. M. Ling, H. Moon, E. J. Nemanick, and Z. N. Bao, J. Am. Chem. Soc. 128, 3880 (2006).
http://dx.doi.org/10.1021/ja058226v
20.
20. S. C. B. Mannsfeld, A. Sharei, S. H. Liu, M. E. Roberts, and Z. N. Bao, Adv. Mater. 20, 4044 (2008).
http://dx.doi.org/10.1002/adma.200703244
21.
21. S. H. Liu, W. M. Wang, S. C. B. Mannsfeld, J. Locklin, P. Erk, M. Gomez, F. Richter, and Z. N. Bao, Langmuir 23, 7428 (2007).
http://dx.doi.org/10.1021/la700493p
22.
22. T. Minari, M. Kano, T. Miyadera, S. D. Wang, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 94, 093307 (2009).
http://dx.doi.org/10.1063/1.3095665
23.
23. T. Minari, M. Kano, T. Miyadera, S. D. Wang, Y. Aoyagi, M. Seto, T. Nemoto, S. Isoda, and K. Kazuhito, Appl. Phys. Lett. 92, 173301 (2008).
http://dx.doi.org/10.1063/1.2912822
24.
24. C. Liu, T. Minari, X. B. Xu, A. Kumatani, K. Takimiya, and K. Tsukagoshi, Adv. Mater. 23, 523 (2011).
http://dx.doi.org/10.1002/adma.201002682
25.
25. G. de Luca, A. Liscio, F. Nolde, L. M. Scolaro, V. Palermo, K. Müllen, and P. Samorì, Soft Matter 4, 2064 (2008).
http://dx.doi.org/10.1039/b807391k
26.
26. G. de Luca, W. Pisula, D. Credgington, E. Treossi, O. Fenwick, G. M. Lazzerini, R. Dabirian, E. Orgiu, A. Liscio, V. Palermo, K. Müllen, F. Cacialli, and P. Samorì, Adv. Func. Mater. 21, 1279 (2011).
http://dx.doi.org/10.1002/adfm.201001769
27.
27. H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, and T. Yui, J. Am. Chem. Soc. 129, 15732 (2007).
http://dx.doi.org/10.1021/ja074841i
28.
28. T. Izawa, E. Miyazaki, and K. Takimiya, Adv. Mater. 20, 3388 (2008).
http://dx.doi.org/10.1002/adma.200800799
29.
29. T. Uemura, Y. Hirose, M. Uno, K. Takimiya, and J. Takeya, Appl. Phys. Express 2, 111501 (2009).
http://dx.doi.org/10.1143/APEX.2.111501
30.
30. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2006).
31.
31. H. Sirringhaus, Adv. Mater. 21, 2859 (2009).
http://dx.doi.org/10.1002/adma.200901136
32.
32. S. D. Wang, T. Minari, T. Miyadera, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 92, 063305 (2008).
http://dx.doi.org/10.1063/1.2844857
33.
33. G. Ghibaudo, Electron. Lett. 24, 543 (1988).
http://dx.doi.org/10.1049/el:19880369
34.
34. Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek, and G. Ghibaudo J. Appl. Phys. 107, 114507 (2010).
http://dx.doi.org/10.1063/1.3432716
35.
35. S. D. Wang, Y , Yan, and K. Tsukagoshi, Appl. Phys. Lett. 97, 063307 (2010).
http://dx.doi.org/10.1063/1.3479531
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3608793
Loading
/content/aip/journal/adva/1/2/10.1063/1.3608793
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3608793
2011-06-24
2014-12-22

Abstract

We report on the patterning of organic single-crystaltransistors with high device performance fabricated via a solution process under ambient conditions. The semiconductor was patterned on substrates via surface selective deposition. Subsequently, solvent-vapor annealing was performed to reorganize the semiconductor into single crystals. The transistors exhibited field-effect mobility (μ FET) of up to 3.5 cm2/V s. Good reliability under bias-stress conditions indicates low density of intrinsic defects in crystals and low density of traps at the active interfaces. Furthermore, the Y function method clearly suggests that the variation of μ FET of organic crystaltransistors was caused by contact resistance. Further improvement of the device with higher μ FET with smaller variation can be expected when lower and more uniform contact resistance is achieved.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3608793.html;jsessionid=9mrc4rti3fuhf.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3608793&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Patterning solution-processed organic single-crystal transistors with high device performance
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3608793
10.1063/1.3608793
SEARCH_EXPAND_ITEM