1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Patterning solution-processed organic single-crystal transistors with high device performance
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3608793
1.
1. Z. Bao and J. Locklin, Organic Field-Effect Transistors: Optical Science and Engineering Series (London, CRC Press, 2007)
2.
2. H. Klauk, Organic Electronics: Materials, Manufacturing, and Applications (Weinheim, Wiley-VCH Verlag GmbH, 2006)
3.
3. T. Hallam, M. J. Lee, N. Zhao, I. Nandhakunar, M. Kemerink, M. Heeney, I, McCulloch, and H. Sirringhaus, Phys. Rev. Lett. 103, 256803 (2009)
http://dx.doi.org/10.1103/PhysRevLett.103.256803
4.
4. E. Menard, V. Podzorov, S. H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers, Adv. Mater. 16, 2097 (2004).
http://dx.doi.org/10.1002/adma.200401017
5.
5. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004).
http://dx.doi.org/10.1126/science.1094196
6.
6. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).
http://dx.doi.org/10.1063/1.2711393
7.
7. O. D. Jurchescu, M. Popinciuc, B. J. van Wees, and T. T. M. Palstra, Adv. Mater. 19, 688 (2007).
http://dx.doi.org/10.1002/adma.200600929
8.
8. T. Hasegawa and J. Takeya, Sci. Technol. Adv. Mater. 10, 024314 (2009).
http://dx.doi.org/10.1088/1468-6996/10/2/024314
9.
9. S. Steudel, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett. 85, 5550 (2004).
http://dx.doi.org/10.1063/1.1832732
10.
10. S. de Vusser, S. Steudel, K. Myny, J. Genoe, and P. Heremans, Appl. Phys. Lett. 88, 103501 (2006).
http://dx.doi.org/10.1063/1.2182008
11.
11. Q. X. Tang, H. X. Li, Y. B. Song, W. Xu, W. P. Hu, L. Jiang, Y. Q. Liu, X. K. Wang, and D. B. Zhu, Adv. Mater. 18, 3010 (2006).
http://dx.doi.org/10.1002/adma.200600542
12.
12. Q. X. Tang, H. X. Li, M. He, W. P. Hu, C. M. Liu, K. Q. Chen, C. Wang, Y. Q. Liu, and D. B. Zhu, Adv. Mater. 18, 65 (2006).
http://dx.doi.org/10.1002/adma.200501654
13.
13. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. H. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. N. Bao, Nature 444, 913 (2006).
http://dx.doi.org/10.1038/nature05427
14.
14. Q. X. Tang, H. X. Li, Y. L. Liu, and W. P. Hu, J. Am. Chem. Soc. 128, 14634 (2006).
http://dx.doi.org/10.1021/ja064476f
15.
15. Y. L. Liu, H. X. Li, D. Y. Tu, Z. Y. Ji, C. S. Wang, Q. X. Tang, M. Liu, W. P. Hu, Y. Q. Liu, and D. B. Zhu, J. Am. Chem. Soc. 128, 12917 (2006).
http://dx.doi.org/10.1021/ja0636183
16.
16. K. Xiao, I. N. Ivanov, A. A. Puretzky, Z. Q. Liu, and D. B. Geohegan, Adv. Mater. 18, 2184 (2006).
http://dx.doi.org/10.1002/adma.200600621
17.
17. K. Xiao, J. Tao, Z. W. Pan, A. A. Puretzky, I. N. Ivanov, S. J. Pennycook, and D. B. Geohegan, Angew. Chem. Int. Ed. 46, 2650 (2007).
http://dx.doi.org/10.1002/anie.200604397
18.
18. S. H. Liu, W. M. Wang, A. L. Briseno, S. C. B. Mannsfeld, and Z. N. Bao, Adv. Mater. 21, 1217 (2009).
http://dx.doi.org/10.1002/adma.200802202
19.
19. A. L. Briseno, M. Roberts, M. M. Ling, H. Moon, E. J. Nemanick, and Z. N. Bao, J. Am. Chem. Soc. 128, 3880 (2006).
http://dx.doi.org/10.1021/ja058226v
20.
20. S. C. B. Mannsfeld, A. Sharei, S. H. Liu, M. E. Roberts, and Z. N. Bao, Adv. Mater. 20, 4044 (2008).
http://dx.doi.org/10.1002/adma.200703244
21.
21. S. H. Liu, W. M. Wang, S. C. B. Mannsfeld, J. Locklin, P. Erk, M. Gomez, F. Richter, and Z. N. Bao, Langmuir 23, 7428 (2007).
http://dx.doi.org/10.1021/la700493p
22.
22. T. Minari, M. Kano, T. Miyadera, S. D. Wang, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 94, 093307 (2009).
http://dx.doi.org/10.1063/1.3095665
23.
23. T. Minari, M. Kano, T. Miyadera, S. D. Wang, Y. Aoyagi, M. Seto, T. Nemoto, S. Isoda, and K. Kazuhito, Appl. Phys. Lett. 92, 173301 (2008).
http://dx.doi.org/10.1063/1.2912822
24.
24. C. Liu, T. Minari, X. B. Xu, A. Kumatani, K. Takimiya, and K. Tsukagoshi, Adv. Mater. 23, 523 (2011).
http://dx.doi.org/10.1002/adma.201002682
25.
25. G. de Luca, A. Liscio, F. Nolde, L. M. Scolaro, V. Palermo, K. Müllen, and P. Samorì, Soft Matter 4, 2064 (2008).
http://dx.doi.org/10.1039/b807391k
26.
26. G. de Luca, W. Pisula, D. Credgington, E. Treossi, O. Fenwick, G. M. Lazzerini, R. Dabirian, E. Orgiu, A. Liscio, V. Palermo, K. Müllen, F. Cacialli, and P. Samorì, Adv. Func. Mater. 21, 1279 (2011).
http://dx.doi.org/10.1002/adfm.201001769
27.
27. H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, and T. Yui, J. Am. Chem. Soc. 129, 15732 (2007).
http://dx.doi.org/10.1021/ja074841i
28.
28. T. Izawa, E. Miyazaki, and K. Takimiya, Adv. Mater. 20, 3388 (2008).
http://dx.doi.org/10.1002/adma.200800799
29.
29. T. Uemura, Y. Hirose, M. Uno, K. Takimiya, and J. Takeya, Appl. Phys. Express 2, 111501 (2009).
http://dx.doi.org/10.1143/APEX.2.111501
30.
30. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2006).
31.
31. H. Sirringhaus, Adv. Mater. 21, 2859 (2009).
http://dx.doi.org/10.1002/adma.200901136
32.
32. S. D. Wang, T. Minari, T. Miyadera, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 92, 063305 (2008).
http://dx.doi.org/10.1063/1.2844857
33.
33. G. Ghibaudo, Electron. Lett. 24, 543 (1988).
http://dx.doi.org/10.1049/el:19880369
34.
34. Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek, and G. Ghibaudo J. Appl. Phys. 107, 114507 (2010).
http://dx.doi.org/10.1063/1.3432716
35.
35. S. D. Wang, Y , Yan, and K. Tsukagoshi, Appl. Phys. Lett. 97, 063307 (2010).
http://dx.doi.org/10.1063/1.3479531
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3608793
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Materials used including (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (FTS), polymethylmethacrylate (PMMA), and dioctylbenzothienobenzothiophene (C8-BTBT). (b) Fabrication process for patterning organic single-crystal (OSC) transistors with surface selective deposition and solvent-vapor annealing applied for the formation of OSCs. (c) Microscopy image of patterned C8-BTBT OSC transistors. (d) Microscopy image of an individual transistor that is also shown in the green dotted square in (c). (e) Cross-polarized microscopy image showing the crystals in the channel as highlighted by green dotted square in (d), and the crystal in the red circle serving as bridge between the source and drain electrodes. The scale bars in (d) and (e) are for lengths of 200 and 50 μm, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Transfer and (b) output curves of the device shown in Fig. 1(d). Field-effect mobility (μ FET ) is calculated from the saturation regime and the capacitance is 1.5×10−8 F/cm2 (20 nm PMMA on 200 nm SiO2).

Image of FIG. 3.

Click to view

FIG. 3.

(a) Bias-stress measurement of the device in Fig. 1(d) for 12 h, with the bias-stress conditions of gate voltage at of –40 V and drain voltage at –1 V. (b) Shifts of threshold voltage (ΔV T ), field-effect mobility (μ FET ), and drain current (I D ) (VG=–40 V, VD=–40 V) as functions of stress time.

Image of FIG. 4.

Click to view

FIG. 4.

Dependence of the low-field mobility evaluated by the Y function method and field-effect mobility calculated from the transfer curves (VD=−40 V, saturation regime) of individual devices with contact resistance. The dashed lines for both low-field and field-effect mobility serve as guides.

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3608793
2011-06-24
2014-04-21

Abstract

We report on the patterning of organic single-crystaltransistors with high device performance fabricated via a solution process under ambient conditions. The semiconductor was patterned on substrates via surface selective deposition. Subsequently, solvent-vapor annealing was performed to reorganize the semiconductor into single crystals. The transistors exhibited field-effect mobility (μ FET) of up to 3.5 cm2/V s. Good reliability under bias-stress conditions indicates low density of intrinsic defects in crystals and low density of traps at the active interfaces. Furthermore, the Y function method clearly suggests that the variation of μ FET of organic crystaltransistors was caused by contact resistance. Further improvement of the device with higher μ FET with smaller variation can be expected when lower and more uniform contact resistance is achieved.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3608793.html;jsessionid=3a1a2esh8m2qr.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3608793&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Patterning solution-processed organic single-crystal transistors with high device performance
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3608793
10.1063/1.3608793
SEARCH_EXPAND_ITEM