1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Defect-induced magnetism in undoped wide band gap oxides: Zinc vacancies in ZnO as an example
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/2/10.1063/1.3609964
1.
1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
2.
2. I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
3.
3. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, J. Appl. Phys. 93, 1 (2003).
http://dx.doi.org/10.1063/1.1517164
4.
4. T. Dietl, D. D. Awschalom, M. Kaminska, and H. Ohno, Spintronics (Elsevier Press, UK, 2008).
5.
5. J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. Huang, X. B. Qin, B. Y. Wang, T. Wu, L. Wang, H. T. Zhang, X. Y. Gao, T. Liu, A. T. S. Wee, Y. P. Feng, and J. Ding, Phys. Rev. Lett. 104, 137201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.137201
6.
6. J. M. D. Coey, P. Stamenov, R. D. Gunning, M. Venkatesan and K. Paul, New J. Phys. 12, 053025 (2010).
http://dx.doi.org/10.1088/1367-2630/12/5/053025
7.
7. S. B. Ogale, Adv. Mater. 22, 3125 (2010).
http://dx.doi.org/10.1002/adma.200903891
8.
8. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morko, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
9.
9. C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and nanostructures (Elsevier Press, UK, 2006).
10.
10. C. Klingshirn, Chemphyschem 8, 782 (2007).
http://dx.doi.org/10.1002/cphc.200700002
11.
11. G. Z. Xing, X. S. Fang, Z. Zhang, D. D. Wang, X. Huang, J. Guo, L. Liao, Z. Zheng, H. R. Xu, T. Yu, Z. X. Shen, C. H. A. Huan, T. C. Sum, H. Zhang, and T. Wu, Nanotechnology 21, 255701 (2010).
http://dx.doi.org/10.1088/0957-4484/21/25/255701
12.
12. K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, and H. Koinuma, J. Appl. Phys. 89, 7284 (2001).
http://dx.doi.org/10.1063/1.1356035
13.
13. K. R. Kittilstved, N. S. Norberg, and D. R. Gamelin, Phys. Rev. Lett. 94, 147209 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.147209
14.
14. G. Z. Xing, J. B. Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. P. Li, S. J. Wang, J. Ding, T. C. Sum, C. H. A. Huan, and T. Wu, Adv. Mater. 20, 3521 (2008).
http://dx.doi.org/10.1002/adma.200703149
15.
15. M. Snure, D. Kumar, and A. Tiwari, JOM 61, 72 (2009).
http://dx.doi.org/10.1007/s11837-009-0092-9
16.
16. D. W. Abraham, M. M. Frank, and S. Guha, Appl. Phys. Lett. 87, 252502 (2005).
http://dx.doi.org/10.1063/1.2146057
17.
17. M. D. McCluskey and S. J. Jokela, J. Appl. Phys. 106, 071101 (2009).
http://dx.doi.org/10.1063/1.3216464
18.
18. S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.166601
19.
19. J.-Y. Kim, J.-H. Park, B.-G. Park, H.-J. Noh, S.-J. Oh, J. S. Yang, D.-H. Kim, S. D. Bu, T.-W. Noh, H.-J. Lin, H.-H. Hsieh, and C. T. Chen, Phys. Rev. Lett. 90, 017401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.017401
20.
20. J. M. D. Coey, Solid State Sci. 7, 660 (2005).
http://dx.doi.org/10.1016/j.solidstatesciences.2004.11.012
21.
21. J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nat. Mater., 4, 173 (2005).
http://dx.doi.org/10.1038/nmat1310
22.
22. H. W. Peng, H. J. Xiang, S- H. Wei, S.- S. Li, J.- B. Xia, and J. B. Li, Phys. Rev. Lett. 102, 017201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.017201
23.
23. Q. Y. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, and M. Grundmann, Appl. Phys. Lett. 92, 082508 (2008).
http://dx.doi.org/10.1063/1.2885730
24.
24. S. Banerjee, M. Mandal, N. Gayathri, and M. Sardar, Appl. Phys. Lett. 91, 182501 (2007).
http://dx.doi.org/10.1063/1.2804081
25.
25. K. Potzger, Z. Shengqiang, J. Grenzer, M. Helm, and J. Fassbender, Appl. Phys. Lett. 92, 182504 (2008).
http://dx.doi.org/10.1063/1.2921782
26.
26. M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W. A. Adeagbo, W. Hergert, and A. Ernst, Phys. Rev. B 80, 035331 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.035331
27.
27. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, Phys. Rev. B 77, 205411 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.205411
28.
28. D. Q. Gao, Z. H. Zhang, J. L. Fu, Y. Xu, J. Qi, and D. S. Xue, J. Appl. Phys. 105, 113928 (2009).
http://dx.doi.org/10.1063/1.3143103
29.
29. S. Majumder, D. Paramanik, A. Gupta and Shikha Varma, Appl. Surf. Sci. 256, 513 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.07.096
30.
30. N. H. Hong, A. Barla, J. Sakai, N. Q. Huong, Phys. Stat. Sol. C 4, 4461 (2007).
http://dx.doi.org/10.1002/pssc.200777342
31.
31. Y. F. Li, R. Deng, B. Yao, G. Z. Xing, D. D. Wang, and Tom Wu, Appl. Phys. Lett. 97, 102506 (2010).
http://dx.doi.org/10.1063/1.3485058
32.
32. X. Zhang, Y. H. Cheng, L. Y. Li, Hui Liu, X. Zuo, G. H. Wen, L. Li, R. K. Zheng, and S. P. Ringer, Phys. Rev. B 80, 174427 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.174427
33.
33. A. L. Schoenhalz, J. T. Arantes, A. Fazzio, and G. M. Dalpian, Appl. Phys. Lett. 94, 162503 (2009).
http://dx.doi.org/10.1063/1.3119640
34.
34. D. Kim, J. H. Yang, and J. Hong, J. Appl. Phys. 106, 013908 (2009).
http://dx.doi.org/10.1063/1.3158535
35.
35. M. Venkatesan, C. Fitzgerald, and J. M. D. Coey, Nature (London) 430, 630 (2004).
http://dx.doi.org/10.1038/430630a
36.
36. N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Phys. Rev. B 73, 132404 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.132404
37.
37. N. H. Hong, N. Poirot, and J. Sakai, Phys. Rev. B 77, 033205 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.033205
38.
38. G. Z. Xing, J. B. Yi, D. D. Wang, L. Liao, T. Yu, Z. X. Shen, C. H. A. Huan, T. C. Sum, J. Ding, and T. Wu, Phys. Rev. B 79, 174406 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.174406
39.
39. J. A. Chan, S. Lany, and A. Zunger, Phys. Rev. Lett. 103, 016404 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.016404
40.
40. C. M. Araujo, M. Kapilashrami, J. Xu, O. D. Jayakumar, S. Nagar, Y. Wu, C. Århammar, B. Johansson, L. Belova, R. Ahuja, G. A. Gehring, and K. V. Rao, Appl. Phys. Lett. 96, 232505 (2010).
http://dx.doi.org/10.1063/1.3447376
41.
41. L. Liao, B. Yan, Y. F. Hao, G. Z. Xing, J. P. Liu, B. C. Zhao, Z. X. Shen, T. Wu, L. Wang, J. T. L. Thong, C. M. Li, W. Huang, and T. Yu, Appl. Phys. Lett. 94, 113106 (2009).
http://dx.doi.org/10.1063/1.3097029
42.
42. S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich, X. Zuo, D. A. Arena, K. Ziemer, C. Vittoria, and V. G. Harris, J. Phys.: Condens. Matter 18, L355 (2006).
http://dx.doi.org/10.1088/0953-8984/18/27/L01
43.
43. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B. 74, 161306R (2006).
http://dx.doi.org/10.1103/PhysRevB.74.161306
44.
44. Q. Y. Xu, S. Q. Zhou and H. Schmidt, J. Alloys Compd. 487, 665 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.08.033
45.
45. J. P. Xu, S. B. Shi, L. Li, X. S. Zhang, Y. X. Wang and X. M. Chen, Chin. Phys. Lett. 27, 047803 (2010).
http://dx.doi.org/10.1088/0256-307X/27/4/047803
46.
46. L. H. Xu, X. Y. Li and J. Yuan, Superlatt. Microstruc. 44, 276 (2008).
http://dx.doi.org/10.1016/j.spmi.2008.04.004
47.
47. Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang, Appl. Phys. Lett. 90, 042113 (2007).
http://dx.doi.org/10.1063/1.2435699
48.
48.JCPDS Card. No. 36-1451.
49.
49. L. Znaidi, J. Sol-Gel Sci. Technol 26, 817 (2003).
50.
50. J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. Leclair, T. S. Santos, and J. S. Moodera, Nat. Mater. 5, 298 (2006).
http://dx.doi.org/10.1038/nmat1613
51.
51. S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett. 91, 077205 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.077205
52.
52. N. F. Mott, J. Non-Cryst. Solids 1, 1 (1968).
http://dx.doi.org/10.1016/0022-3093(68)90002-1
53.
53. Y. Natsume, H. Sakata, and T. Hirayama, Phys. Status Solidi A 148, 485 (1995).
http://dx.doi.org/10.1002/pssa.2211480217
54.
54. S. Bandyopadhyay, G. K. Paul, R. Roy, S. K. Sen, and S. Sen, Mater. Chem. Phys. 74, 83 (2002).
http://dx.doi.org/10.1016/S0254-0584(01)00402-3
55.
55. S. Singh and M. S. Ramachandra Rao, Phys. Rev. B 80, 045210 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.045210
56.
56. F. Reuss, S. Frank, C. Kirchner, R. Kling, Th. Gruber, and A. Waag, Appl. Phys. Lett. 87, 112104 (2005).
http://dx.doi.org/10.1063/1.2045553
57.
57. B. Raquet, M. Goiran, N. Nègre, J. Léotin, B. Aronzon, V. Rylkov, and E. Meilikhov, Phys. Rev. B 62, 17144 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.17144
58.
58. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1539
59.
59. A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X-H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett. 100, 047206 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.047206
60.
60. H. S. Hsu, C. P. Lin, H. Chou and J. C. A. Huang, Appl. Phys. Lett. 93, 142507 (2008).
http://dx.doi.org/10.1063/1.3000015
61.
61. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).
http://dx.doi.org/10.1088/0034-4885/72/12/126501
62.
62. A. B. Djurišić and Y. H. Leung, Small 2, 944 (2006).
http://dx.doi.org/10.1002/smll.200600134
63.
63. X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen and I. A. Buyanova, J. Phys. D: Appl. Phys. 42, 175411 (2009).
http://dx.doi.org/10.1088/0022-3727/42/17/175411
64.
64. B. J. Pierce and R. L. Hengehold, J. Appl. Phys. 47, 644 (1976).
http://dx.doi.org/10.1063/1.322627
65.
65. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, Phys. Rev. B 57, 12151 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.12151
66.
66. J. R. Haynes, Phys. Rev. Lett. 4, 361 (1960).
http://dx.doi.org/10.1103/PhysRevLett.4.361
67.
67. S. B. Zhang, S.-H. Wei, and Alex Zunger, Phys. Rev. B 63, 075205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.075205
68.
68. P. Erhart and K. Albe, Phys. Rev. B 73, 115207 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.115207
69.
69. Y. Q. Gai, B. Yao, Y. F. Li, Y. M. Lu, D. Z. Shen, J. Y. Zhang, D. X. Zhao, X. W. Fan and T. Cui, Phys. Lett. A 372, 5077 (2008).
http://dx.doi.org/10.1016/j.physleta.2008.05.055
70.
70. Y. W. Heo, D. P. Norton and S. J. Pearton, J. Appl. Phys. 98, 073502 (2005).
http://dx.doi.org/10.1063/1.2064308
71.
71. D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu and W. K. Chan, Appl. Phys. Lett. 85, 1601 (2004).
http://dx.doi.org/10.1063/1.1786375
72.
72. C. Klingshirn, phys. stat. sol. (b) 244, 3027 (2007).
http://dx.doi.org/10.1002/pssb.200743072
73.
73. D. Wang, Z. Q. Chen, D. D. Wang, N. Qi, J. Gong, C. Y. Cao, and Z. Tang, J. Appl. Phys. 107, 023524 (2010).
http://dx.doi.org/10.1063/1.3291134
74.
74. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
75.
75. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
76.
76. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
77.
77. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
78.
78. V. R. Saunders et al., Crystal03 User's Manual, University of Torino, Torino, 2003 (www.crystal.unito.it).
79.
79. Y. H. Lu, Z. X. Hong, Y. P. Feng and S. P. Russo, Appl. Phys. Lett. 96, 091914 (2010).
http://dx.doi.org/10.1063/1.3340934
80.
80. C. Kittel, Introduction to Solid State Physics (8th edn New York: Wiley, 2005).
81.
81. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72, 024450 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024450
82.
82. C. Das Pemmaraju and S. Sanvito, Phys. Rev. Lett. 94, 217205 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.217205
83.
83. G. Bouzerar and T. Ziman, Phys. Rev. Lett. 96, 207602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.207602
84.
84. N. H. Hong, J. Sakai, and V. Brize, J. Phys.: Condens. Matter 19, 036219 (2007).
http://dx.doi.org/10.1088/0953-8984/19/3/036219
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3609964
Loading
/content/aip/journal/adva/1/2/10.1063/1.3609964
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/2/10.1063/1.3609964
2011-06-29
2014-10-26

Abstract

To shed light on the mechanism responsible for the weak ferromagnetism in undoped wide band gap oxides, we carry out a comparative study on ZnOthin films prepared using both sol-gel and molecular beam epitaxy(MBE) methods. Compared with the MBE samples, the sol-gel derived samples show much stronger room temperature ferromagnetism with a magnetic signal persisting up to ∼740 K, and this ferromagnetic order coexists with a high density of defects in the form of zincvacancies. The donor-acceptor pairs associated with the zincvacancies also cause a characteristic orange-red photoluminescence in the sol-gel films. Furthermore, the strong correlation between the ferromagnetism and the zincvacancies is confirmed by our first-principles density functional theory calculations, and electronic band alteration as a result of defect engineering is proposed to play the critical role in stabilizing the long-range ferromagnetism.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/2/1.3609964.html;jsessionid=2o6nleeqer9ng.x-aip-live-03?itemId=/content/aip/journal/adva/1/2/10.1063/1.3609964&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Defect-induced magnetism in undoped wide band gap oxides: Zinc vacancies in ZnO as an example
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/2/10.1063/1.3609964
10.1063/1.3609964
SEARCH_EXPAND_ITEM