Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquids samples,” Bull. Am. Phys. Soc. 9, 501 (1964).
2. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 38 (1965).
3. R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurement by mean of the thermal lens effect using a He:Ne laser,” Appl. Phys. Lett. 5, 141143 (1964).
4. D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys. 37, 33143315 (1966).
5. A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” J. Opt. Soc. Am. B 23, 14081413 (2006).
6. R. A. Cruz, A. Marcano, C. Jacinto, and T. Catunda, “Ultrasensitive thermal lens spectroscopy of water,” Opt. Lett. 34, 18821884 (2009).
7. M. L. Baesso, J. Shen, and R. D. Snook, “Time-resolved thermal lens measurement of thermal diffusivity of sodalime glass,” Chem. Phys. Lett. 197, 255258 (1992).
8. M. Benitez, A. Marcano, N. Melikechi, “Thermal diffusivity measurement using the mode-mismatched photothermal lens method,” Opt. Engineering 48, 0436041 (2009).
9. M. Fischer, J. Georges, “Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry,” Chem. Phys. Lett. 260, 115118 (1996).
10. M. Fischer, J. Georges, “Use of thermal lens spectrometry for the investigation of dimerization equilibria of rhodamine 6G in water and aqueous micellar solutions,” Chem. Phys. Lett. 260, 115118 (1996).
11. T. Berthoud, N. Delorme, P. Mauchien, “Beam geometry optimization in dual-beam thermal lensing spectrometry,” Anal. Chem., 1985 57, 12161219 (1985).
12. C. Hu and J. R. Whinnery, “New Thermooptical Measurement Method and a Comparison with Other Methods,” Appl. Opt. 12, 7279 (1973).
13. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 16631669 (1982).
14. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385396 (1992).
15. J. Shen, A. J. Soroka, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry based on beam profile image detection,” J. Appl. Phys. 78, 700708 (1995).
16. Stephen E. Bialkowski and Agnès Chartier, “Diffraction effects in single- and two-laser photothermal lens spectroscopy,” Appl. Opt. 36, 67116721 (1997).
17. M. A. C. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Opt. 48, 393396 (2009).
18. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22, 34063410 (1983).
19. A. Marcano, L. Rodriguez, and N. Melikechi, “Thermal lensing in extended samples,” Appl. Spectrosc. 56, 15041507 (2002).
20. D. Dadarlat, H. Visser and D. Bicanic, “An improved inverse photopyroelectric cell for measurement of thermal effusivity: application to fatty acids and triglycerides,” Meas. Sci. Technol. 6, 12151219 (1995).

Data & Media loading...


Article metrics loading...



Based on a model introduced by Shen et al. for cw laser induced mode-mismatched dual-beam thermal lens spectrometry (TLS), we explore the parameters related with the geometry of the laser beams and the experimental apparatus that influence the amplitude and time evolution of the transient thermal lens (TL) signal. By keeping the sample cell at the minimum waist of the excitation beam, our results show that high amplitude TL signals, very close to the optimized value, combined with short transient times may be obtained by reducing the curvature radius of the probe beam and the distance between the sample cell and the detector. We also derive an expression for the thermal diffusivity which is independent of the excitation laser beam waist, considerably improving the accuracy of the measurements. The sample used in the experiments was oleic acid, which is present in most of the vegetable oils and is very transparent in the visible spectral range.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd