Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3610642
1.
1. J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. B 108, 1175 (1957)
http://dx.doi.org/10.1103/PhysRev.108.1175
2.
2. P. W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates, (Princeton University Press, Princeton, NJ, 1997)
3.
3. D. J. Scalapino, Phys. Rep. 250, 329 (1995)
http://dx.doi.org/10.1016/0370-1573(94)00086-I
4.
4. T. Ma and S. Feng, Phys. Lett. A 328, 212 (2004)
http://dx.doi.org/10.1016/j.physleta.2004.06.011
5.
5. S. Feng, J. Qin and T. Ma, J. Phys. Condensed Matter 16, 343 (2004)
http://dx.doi.org/10.1088/0953-8984/16/3/014
6.
6. D. Reznik, L. Pintschovius, M. Ito, S. Iikubo, M. Sato, H. Goka, M. Fujita, K. Yamada, G. D. Gu and J. M. Tranquada, Nature 440, 1170 (2006)
http://dx.doi.org/10.1038/nature04704
7.
7. T. P Devereaux, T. Cuk, Z.-X Shen, and N. Nagaosa, Phys. Rev. Lett. 93, 117004 (2004)
http://dx.doi.org/10.1103/PhysRevLett.93.117004
8.
8. K. P. Bohnen, R. Heid and M. Krauss, Euro Phys. Lett. 64, 104 (2003)
http://dx.doi.org/10.1209/epl/i2003-00143-x
9.
9. C. Falter and G. A. Hoffmann, Phys. Rev. B 64, 054516 (2001)
http://dx.doi.org/10.1103/PhysRevB.64.054516
10.
10. A. S. Alexandrov, Theory of Superconductivity: From Weak to Strong Coupling (IoP Publishing, Bristol and Philadelphia, 2003)
11.
11. A. S. Alexandrov, Phys. Rev. B 53, 2863 (1996)
http://dx.doi.org/10.1103/PhysRevB.53.2863
12.
12. A. S. Alexandrov and P. E. Kornilovitch, J. Phys. Cond. Matt. 14, 5337 (2002)
http://dx.doi.org/10.1088/0953-8984/14/21/308
13.
13. Guo Meng Zhao, Phys. Rev. B 75, 104511 (2007)
http://dx.doi.org/10.1103/PhysRevB.75.104511
14.
14. S. Ishihara and N. Nagaosa, Phys. Rev. B 69, 1444520 (2004)
15.
15. J. Bouvier and J. Bok, Adv. Cond. Matter Phys. doi:10.1155/2010/472636
http://dx.doi.org/10.1155/2010/472636
16.
16. J. Chang, I. Eremin, and P. Thalmeier, New J. Phys. 11, 055068 (2009)
http://dx.doi.org/10.1088/1367-2630/11/5/055068
17.
17. K. Suekuni, Y. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, M. A. Avila1, and T. Takabatake, Phy. Rev. B 81, 205207 (2010)
http://dx.doi.org/10.1103/PhysRevB.81.205207
18.
18. J. Tang, J. Xu, S. Heguri, H. Fukuoka, S. Yamanaka, K. Akai and K. Tanigaki, Phys. Rev. Lett. 105, 176402 (2010)
http://dx.doi.org/10.1103/PhysRevLett.105.176402
19.
19. D. J. Scalapino, Science 284, 1282 (1999)
http://dx.doi.org/10.1126/science.284.5418.1282
20.
20. J. Orenstein, Nature 72, 333 (1999)
http://dx.doi.org/10.1038/43801
21.
21. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986)
http://dx.doi.org/10.1007/BF01303701
22.
22. A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958)
22.A. B. Migdal, [English Trans. Sov. Phys. JETP 7, 999 (1958)]
23.
23. G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960)
23.G. M. Eliashberg, [English Trans. Sov. Phys. JETP 11, 696 (1960)]
24.
24. P. B. Allen, Nature 412, 494 (2001)
http://dx.doi.org/10.1038/35087696
25.
25. D. Pines and P. Monthoux, J. Phys. Chem. Solid 56, 1651 (1995)
http://dx.doi.org/10.1016/0022-3697(95)00107-7
26.
26. C. Uher, J. Superconductivity 3, 337 (1990)
http://dx.doi.org/10.1007/BF00617463
27.
27. J. Bardeen, G. Rickayazen, and L. Tewordt, Phys Rev B 113, 982 (1959)
http://dx.doi.org/10.1103/PhysRev.113.982
28.
28. L. Tewordt and Th. Wolkhausen Solid State Commun. 70, 839 (1989);
http://dx.doi.org/10.1016/0038-1098(89)90509-7
28.L. Tewordt and Th. Wolkhausen Solid State Commun. 75, 515 (1990)
http://dx.doi.org/10.1016/0038-1098(90)90489-X
29.
29. J. Callaway, Phys. Rev. 113, 1046 (1959)
http://dx.doi.org/10.1103/PhysRev.113.1046
30.
30. B. D. Indu, Int. J. Mod. Phys. B 4, 1379 (1990);
http://dx.doi.org/10.1142/S021797929000067X
30.B. D. Indu, Mod Phys Letters B 26, 1665 (1992)
http://dx.doi.org/10.1142/S0217984992001368
31.
31. B. P. Bahuguna, C. P. Painuli and B. D. Indu Acta phys. Pol A. 80, 527 (1991)
32.
32. D. Feinburg, S. Ciouchi and F. Pasquale de, Int. J. Mod. Phys. B 1, 1317 (1990)
http://dx.doi.org/10.1142/S0217979290000656
33.
33. S. N. Behra and S. G. Mishra, Phys. Rev. B 31, 2773 (1985)
http://dx.doi.org/10.1103/PhysRevB.31.2773
34.
34. H. Y. Fan, Elements of Solid State Physics, (John Wiley, New York, 1987)
35.
35. Keshav N. Shrivastava, Phys. Lett. A, 113 437 (1987)
http://dx.doi.org/10.1016/0375-9601(86)90668-7
36.
36. K. N. Pathak, Phys. Rev. 139, A1569 (1965)
http://dx.doi.org/10.1103/PhysRev.139.A1569
37.
37. R. J. Elliott, Phonons in Perfect Lattice and Lattices with Point Imperfections, (Ed R. W. H. Stevenson, Oliver and Boyd, London 1966)
38.
38. P. K. Sharma and Rita Bahadur, Phys. Rev. B 12, 1522 (1975)
http://dx.doi.org/10.1103/PhysRevB.12.1522
39.
39. D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960)
39.D. N. Zubarev, [English Transl: Sov. Phys. Uspehki 3, 320 (1960)]
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
40.
40. K. A. Müller, Physics C 11, 341 (2000);
40.K. A. Müller, Proc. 10th Anniv. HTS Workshop March 12-16 Ed. B. Batlogg (World Scientific, Houston, 1996)
41.
41. M. L. Kulic, Phys. Rep. 338, 1 (2000)
http://dx.doi.org/10.1016/S0370-1573(00)00008-9
42.
42. A. S. Alexandrov and N. F. Mott, Rep. Prog. Phys. 57, 1197 (1994)
http://dx.doi.org/10.1088/0034-4885/57/12/001
43.
43. G. D. Mahan and J. O. Sofo, Phys. Rev. B 47, 8050 (1993)
http://dx.doi.org/10.1103/PhysRevB.47.8050
44.
44. J. K. Freericks, M. Jarrell and G. D. Mahan, Phys. Rev. Lett. 77, 4588 (1996)
http://dx.doi.org/10.1103/PhysRevLett.77.4588
45.
45. R. J. McQueeney and J. L. Sarrao, Phys. Rev. B 60, 80 (1999)
http://dx.doi.org/10.1103/PhysRevB.60.80
46.
46. J. K. Freericks, V. Zlatic and M. Jarrell, Phys. Rev. B 61, R838 (2000)
http://dx.doi.org/10.1103/PhysRevB.61.R838
47.
47. F. Giustino, M. L. Cohen and S. G. Louie, Nature, 452 975 (2008)
http://dx.doi.org/10.1038/nature06874
48.
48. J. M. Ziman, Phil. Mag. 1, 191 (1956)
http://dx.doi.org/10.1080/14786435608238092
49.
49. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989)
http://dx.doi.org/10.1103/RevModPhys.61.433
50.
50. Ph.B. Allen, W. E. Pickett, H. Krakauer, Phys. Rev. B. 37, 7482 (1988)
http://dx.doi.org/10.1103/PhysRevB.37.7482
51.
51. C. Uher and A. B. Kaiser, Phys. Rev. B 36, 5680 (1987)
http://dx.doi.org/10.1103/PhysRevB.36.5680
52.
52. J. E. Parrott and A. D. Stukes, Thermal conductivity of solids (Pion Limited, London, 1975) pp 45
53.
53. P. G. Klemens, Solid State Physics Vol.7, Ed. F. Seitz and D. Turnbull (Academic Press, INC., New York, 1958) pp. 1
54.
54. M. D. N. Regueiro and D. Castello, Int. J. Mod. Phys. B 5, 2003 (1991)
http://dx.doi.org/10.1142/S021797929100078X
55.
55. D. Varshney and K. K. Chaudhry and R. K. Singh, New J. of Phys 5, 72 (2003)
http://dx.doi.org/10.1088/1367-2630/5/1/372
56.
56. H. B. G. Casimir, Physica 5, 495 (1938)
http://dx.doi.org/10.1016/S0031-8914(38)80162-2
57.
57. B. D. Indu Nuova Cimento 58B, 345 (1980)
http://dx.doi.org/10.1007/BF02874018
58.
58. R. O. Pohl, Phys. Rev. Letts. 8, 481 (1962)
http://dx.doi.org/10.1103/PhysRevLett.8.481
59.
59. C. E. Gough et al., Nature 326, 855 (1987)
http://dx.doi.org/10.1038/326855a0
60.
60. W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965)
http://dx.doi.org/10.1103/PhysRevLett.14.108
61.
61. F. Marsiglio and J. P. Carbotte, The Physics of Conventional and Unconventional Superconductors, Eds K. H. Bennemann and J. B. Ketterson (Springer, Berlin Heidelberg, New York, 2004) pp 233
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3610642
Loading
/content/aip/journal/adva/1/3/10.1063/1.3610642
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3610642
2011-07-05
2016-12-07

Abstract

The theory of thermal conductivity of high temperature superconductors (HTS) based on electron and phonon line width (life times) formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high T c superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La 1.8 Sr 0.2 CuO 4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high T c superconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3610642.html;jsessionid=KEMm0678CcDXqLUl48D5KSg1.x-aip-live-02?itemId=/content/aip/journal/adva/1/3/10.1063/1.3610642&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3610642&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3610642'
Right1,Right2,Right3,