Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3613643
1.
1. M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, Adv. Mater. 13, 113 (2001).
http://dx.doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
2.
2. L. Vayssieres, Adv. Mater. 15, 464 (2003).
http://dx.doi.org/10.1002/adma.200390108
3.
3. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).
http://dx.doi.org/10.1002/anie.200351461
4.
4. B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002).
http://dx.doi.org/10.1063/1.1495878
5.
5. J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, J. Phys. Chem. B 109, 9 (2005).
http://dx.doi.org/10.1021/jp0452599
6.
6. T. Voss, G. T. Svacha, E. Mazur, S. Muller, C. Ronning, D. Konjhodzic, and F. Marlow, Nano Lett. 7, 3675 (2007).
http://dx.doi.org/10.1021/nl071958w
7.
7. G. Q. Mo, J. S. Ye, and W. D. Zhang, Electrochim. Acta 55, 511 (2009).
http://dx.doi.org/10.1016/j.electacta.2009.09.005
8.
8. X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007).
http://dx.doi.org/10.1126/science.1139366
9.
9. X. D. Wang, J. H. Song, P. Li, J. H. Ryou, R. D. Dupuis, C. J. Summers, and Z. L. Wang, J. Am. Chem. Soc. 127, 7920 (2005).
http://dx.doi.org/10.1021/ja050807x
10.
10. G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. X. Tang, I. Shafiq, Z. Z. Ye, C. S. Lee, and S. T. Lee, Adv. Mater. 20, 168 (2008).
http://dx.doi.org/10.1002/adma.200701377
11.
11. H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, Nano Lett. 4, 1247 (2004).
http://dx.doi.org/10.1021/nl049461z
12.
12. S. H. Oh, K. van Benthem, S. I. Molina, A. Y. Borisevich, W. D. Luo, P. Werner, N. D. Zakharov, D. Kurnar, S. T. Pantelides, and S. J. Pennycook, Nano Lett. 8, 1016 (2008).
http://dx.doi.org/10.1021/nl072670+
13.
13. H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu, and W. P. Cai, Adv. Funct. Mater. 20, 561 (2010).
http://dx.doi.org/10.1002/adfm.200901884
14.
14. L. Feng, C. Cheng, B. D. Yao, N. Wang, and M. M. T. Loy, Appl. Phys. Lett. 95, 053113 (2009).
http://dx.doi.org/10.1063/1.3200232
15.
15. C. Cheng, T. L. Wang, L. Feng, W. Li, K. M. Ho, M. M. T. Loy, K. K. Fung, and N. Wang, Nanotechnology 21, 475703 (2010)
http://dx.doi.org/10.1088/0957-4484/21/47/475703
16.
16. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, Nature Mater. 4, 455 (2005).
http://dx.doi.org/10.1038/nmat1387
17.
17. Y. H. Yang, C. X. Wang, B. Wang, Z. Y. Li, J. Chen, D. H. Chen, N. S. Xu, G. W. Yang, and J. B. Xu, Appl. Phys. Lett. 87, 183109 (2005).
http://dx.doi.org/10.1063/1.2126139
18.
18. Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu, and G. W. Yang, Chem. Phys. Lett. 403, 248 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.01.012
19.
19. D. Banerjee, J. Y. Lao, D. Z. Wang, J. Y. Huang, Z. F. Ren, D. Steeves, B. Kimball, and M. Sennett, Appl. Phys. Lett. 83, 2061 (2003).
http://dx.doi.org/10.1063/1.1609036
20.
20. D. Banerjee, S. H. Jo, and Z. F. Ren, Adv. Mater. 16, 2028 (2004).
http://dx.doi.org/10.1002/adma.200400629
21.
21. C. Cheng, M. Lei, L. Feng, T. L. Wong, K. M. Ho, K. K. Fung, M. M. T. Loy, D. P. Yu, and N. Wang, ACS Nano 3, 53 (2009).
http://dx.doi.org/10.1021/nn800527m
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3613643
Loading
/content/aip/journal/adva/1/3/10.1063/1.3613643
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3613643
2011-07-21
2016-12-06

Abstract

We developed a carbon-assisted physical-vapor-deposition method for the growth of highly aligned ZnOnanowire arrays on any flat substrates in large area. Amorphous carbon (a-C) films acted as the preferential nucleation sites to facilitate the growth of high-quality ZnOnanowire array patterns. The ultrathin a-C films can effectively retard the inclined growth of ZnOnanowires at the edge of the a-C patterns. The investigations of the nanowire structures, photoluminescence and electrical transport properties have shown that the ZnOnanowires were well crystallized and the formation of defects in the nanowires was largely suppressed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3613643.html;jsessionid=p5FiODf95_DFrIaB2hwQd_by.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3613643&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3613643&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3613643'
Right1,Right2,Right3,