1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Surface reconstruction precursor to melting in Au309 clusters
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3613650
1.
1. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science 315, 493 (2007)
http://dx.doi.org/10.1126/science.1135941
2.
2. N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang, Science 316, 732 (2007)
http://dx.doi.org/10.1126/science.1140484
3.
3. C. Mottet, G. Rossi, F. Baletto, R. Ferrando, Phys. Rev. Lett. 95, 035501 (2005)
http://dx.doi.org/10.1103/PhysRevLett.95.035501
4.
4. Y. Wang, S. Teitel, C. Dellago, Nano Lett. 5, 2174 (2005)
http://dx.doi.org/10.1021/nl051149h
5.
5. Z. Y. Li, N. P. Young, M. Di Vece, S. Palomba, R. E. Palmer, A. L. Bleloch, B. C. Curley, R. L. Johnston, J. Jiang and J. Yuan, Nature 451, 4648 (2008)
http://dx.doi.org/10.1038/nature06470
6.
6. C. L. Cleveland, W. D. Luedtke, U. Landman, Phys. Rev. Lett. 81, 2036 (1998)
http://dx.doi.org/10.1103/PhysRevLett.81.2036
7.
7. F. Ercolessi, E. Tosatti, M. Parrinello, Phys. Rev. Lett. 57, 719 (1986)
http://dx.doi.org/10.1103/PhysRevLett.57.719
8.
8. J. Perdereau, J. P. Biberian, G. E. Rhead, J. Phys. F 4, 798 (1974)
http://dx.doi.org/10.1088/0305-4608/4/5/022
9.
9. A. R. Ubbelode, The Molten State of Matter (Wiley, New York, 1978), Chap. 12 and references therein
10.
10. R. P. Gupta, Phys. Rev. B 23, 6265 (1981)
http://dx.doi.org/10.1103/PhysRevB.23.6265
11.
11. H. C. Anderson, J. Chem. Phys. 72, 2383 (1980)
12.
12. F. Baletto, C. Mottet, R. Ferrando, Surf. Sci. 446, 31 (2000)
http://dx.doi.org/10.1016/S0039-6028(99)01058-4
13.
13. R. L. Johnston, Dalton Trans. 4193 (2003)
http://dx.doi.org/10.1039/b305686d
14.
14. L. Verlet, Phys. Rev. 159, 98 (1967)
http://dx.doi.org/10.1103/PhysRev.159.98
15.
15. B. C. Curley, R. L. Johnston, N. P. Young, Z. Y. Li, M. Di Vece, R. E. Palmer and A. L. Bleloch, J. Phys Chem. C 2007, 111, 1784617851.
http://dx.doi.org/10.1021/jp0713099
16.
16. C. Mottet, G. Treglia, B. Legrand, Surf. Sci. 219, L797 (1997)
17.
17. S. C. Hendy and B. D. Hall, Phys. Rev. B 64, 085425 (2001)
http://dx.doi.org/10.1103/PhysRevB.64.085425
18.
18. E. G. Noya, J. P. K. Doye, J. Chem. Phys. 124, 104503 (2006)
http://dx.doi.org/10.1063/1.2173260
19.
19. J. P. K. Doye, F. Calvo, J. Chem. Phys. 116, 8307 (2002)
http://dx.doi.org/10.1063/1.1469616
20.
20. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev B. 28, 784 (1983)
http://dx.doi.org/10.1103/PhysRevB.28.784
21.
21. K. Koga, T. Ikeshoji, and K. Sugawara, Phys. Rev. Lett. 92, 115507 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.115507
22.
22. P. Carnevali, F. Ercolessi, and E. Tosatti, Phys. Rev. B 36, 6701 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.6701
23.
23. K. D. Stock and B. Grosser, J. Cryst. Growth 50, 485 (1980).
http://dx.doi.org/10.1016/0022-0248(80)90097-4
24.
24. R. W. Cahn, Nature, 323, 668 (1986)
http://dx.doi.org/10.1038/323668a0
25.
25. M. Born, J. Chem. Phys. 7, 591 (1939)
http://dx.doi.org/10.1063/1.1750497
26.
26. F. A. Lindemann, Z. Phys. 11, 609 (1910)
27.
27. M. Forsblom and G. Grinvall, Phys. Rev. B, 72, 054107 (2005)
http://dx.doi.org/10.1103/PhysRevB.72.054107
28.
28. X. M. Bai and Mo. Li, Phys. Rev. B, 77, 134109 (2008)
http://dx.doi.org/10.1103/PhysRevB.77.134109
29.
29. R. S. Berry, Nature, 393, 212 (1998)
http://dx.doi.org/10.1038/30352
30.
30. F. Calvo, Faraday Discuss. 138, 7588 (2008).
http://dx.doi.org/10.1039/b702732j
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3613650
Loading
/content/aip/journal/adva/1/3/10.1063/1.3613650
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3613650
2011-07-21
2014-07-25

Abstract

The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm) decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. The surface reconstruction lead to an enhanced melting temperature for (100) faceted decahedral and cuboctahedral cluster than (111) faceted icosahedral gold cluster, which form a liquid patch due to surfacevacancy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3613650.html;jsessionid=5sihr9kod42f8.x-aip-live-02?itemId=/content/aip/journal/adva/1/3/10.1063/1.3613650&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Surface reconstruction precursor to melting in Au309 clusters
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3613650
10.1063/1.3613650
SEARCH_EXPAND_ITEM