Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3615716
1.
1. L. C. Kimerling, Appl. Surf. Sci. 159-160, 8 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00126-4
2.
2. M. Haurylau, C. Guoqing, C. Hui, Z. Jidong, N. A. Nelson, D. H. Albonesi, E. G. Friedman and P. M. Fauchet, IEEE J. Sel. Top. Quantum Electron. 12, 1699 (2006).
http://dx.doi.org/10.1109/JSTQE.2006.880615
3.
3. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell and E. Mazur, Nature 426, 816 (2003).
http://dx.doi.org/10.1038/nature02193
4.
4. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, Liu and E. Mazur, Nano Lett. 5, 259 (2005).
http://dx.doi.org/10.1021/nl0481977
5.
5. L. Tong and E. Mazur, J. Non-Cryst. Solids 354, 1240 (2008).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.10.090
6.
6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto and T. Kobayashi, Opt. Lett. 22, 475 (1997).
http://dx.doi.org/10.1364/OL.22.000475
7.
7. M. Haruna, Y. Murata and H. Nishihara, Jpn. J. Appl. Phys., Part 1 31, 1593 (1992).
http://dx.doi.org/10.1143/JJAP.31.1593
8.
8. K. S. Park, E. K. Seo, Y. R. Do, K. Kim and M. M. Sung, J. Am. Chem. Soc. 128, 858 (2005).
http://dx.doi.org/10.1021/ja055377p
9.
9. B. Liu and S.-T. Ho, J. Electrochem. Soc. 155, P57 (2008).
http://dx.doi.org/10.1149/1.2883730
10.
10. K.-m. Yoon, K.-Y. Yang, H. Lee and H.-S. Kim, J. Vac. Sci. Technol. B 27, 2810 (2009).
http://dx.doi.org/10.1116/1.3246394
11.
11. S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, E. S. Lambers, D. P. Norton and S. J. Pearton, Appl. Surf. Sci. 185, 27 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00562-1
12.
12. A. Bornstein, N. Croitoru and E. Marom, J. Non-Cryst. Solids 74, 57 (1985).
http://dx.doi.org/10.1016/0022-3093(85)90400-4
13.
13. L.-J. Meng and M. P. dos Santos, Thin Solid Films 226, 22 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90200-9
14.
14. C. K. Chung, M. W. Liao and C. W. Lai, Thin Solid Films 518, 1415 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.09.076
15.
15. A. Karuppasamy and A. Subrahmanyam, J. Appl. Phys. 101, 064318 (2007).
http://dx.doi.org/10.1063/1.2714770
16.
16. D. Mardare and P. Hones, Mater. Sci. Eng., B 68, 42 (1999).
http://dx.doi.org/10.1016/S0921-5107(99)00335-9
17.
17. L.-J. Meng, V. Teixeira, H. N. Cui, F. Placido, Z. Xu and M. P. dos Santos, Appl. Surf. Sci. 252, 7970 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.10.012
18.
18. V. Straňák, M. Čada, M. Quaas, S. Block, R. Bogdanowicz, Š. Kment, H. Wulff, Z. Hubička, C. A. Helm, M. Tichý and R. Hippler, J. Phys. D: Appl. Phys. 42, 105204 (2009).
http://dx.doi.org/10.1088/0022-3727/42/10/105204
19.
19. S. Tanemura, L. Miao, P. Jin, K. Kaneko, A. Terai and N. Nabatova-Gabain, Appl. Surf. Sci. 212-213, 654 (2003).
http://dx.doi.org/10.1016/S0169-4332(03)00015-1
20.
20. M. H. Suhail, G. M. Rao and S. Mohan, J. Appl. Phys. 71, 1421 (1992).
http://dx.doi.org/10.1063/1.351264
21.
21. H. Xie, F. L. Ng and X. T. Zeng, Thin Solid Films 517, 5066 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.159
22.
22. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes and B. Samset, Thin Solid Films 371, 218 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01015-4
23.
23. W.-H. Wang and S. Chao, Opt. Lett. 23, 1417 (1998).
http://dx.doi.org/10.1364/OL.23.001417
24.
24. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
http://dx.doi.org/10.1063/1.1308532
25.
25. R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine and A. Boudrioua, Optical Materials 30, 645 (2007).
http://dx.doi.org/10.1016/j.optmat.2007.02.047
26.
26. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen and S. Honkanen, Appl. Opt. 49, 4321 (2010).
http://dx.doi.org/10.1364/AO.49.004321
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3615716
Loading
/content/aip/journal/adva/1/3/10.1063/1.3615716
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3615716
2011-07-15
2016-10-01

Abstract

An optical channel waveguide is a key solution to overcome signal propagation delay. For the benefits of miniaturization, development of microfabrication process for waveguides is demanded. TiO2 is one of the suitable candidates for the microfabricated waveguide because of the high refractive index and the transparency. In the present study, conventional microfabrication processes manufactured TiO2channel waveguides with 1–20 μm width on oxidized Si substrates and the propagation loss was measured. The prepared channels successfully guided light of 632.8 nm along linear and Y-branched patterns. The propagation loss for the linear waveguide was 9.7 dB/cm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3615716.html;jsessionid=rdv-qOmjEgqWywaS3BPfe0Kb.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3615716&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3615716&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3615716'
Right1,Right2,Right3,