1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Compound FDTD method for silicon photonics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3621827
1.
1. Q. Lin, O. J. Painter, and G. P. Agraval, “Nonlinear optical phenomena in silicon waveguide: Modeling and applications,” Opt Express 15, 1660416644 (2007).
http://dx.doi.org/10.1364/OE.15.016604
2.
2. Y. Huang, and S. T. Ho, “Computational model for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonic,” Opt Express 14, 35693587 (2006).
http://dx.doi.org/10.1364/OE.14.003569
3.
3. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl Phys Lett 82, 29542956, (2003).
http://dx.doi.org/10.1063/1.1571665
4.
4. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonics nanowires,” Opt Express 16, no. 2, (2008).
http://dx.doi.org/10.1364/OE.16.001300
5.
5. P. Dumon, G. Priem, and L. R. Nunes, “Linear and Nonlinear nanophotonic devices based on silicon-on-insolator wire waveguides,” Japan J. Appl Phys 45, no. 8B, 65896602 (2006).
http://dx.doi.org/10.1143/JJAP.45.6589
6.
6. V. R. Almeida, C. A. Barrios, R. R. Panepuccl, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 10811084 (2004).
http://dx.doi.org/10.1038/nature02921
7.
7. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt Express 15, 1193411941 (2007).
http://dx.doi.org/10.1364/OE.15.011934
8.
8. T. B. Jones, M. Hochberg, C. Walker, A. Scherer, “High Q-ring resonator in thin silicon on insulator,” Appl Phys Letter 85, 33463347 (2004).
http://dx.doi.org/10.1063/1.1781355
9.
9. Q. Xu, and M. Lipson, “All-Optical logic based on silicon micro-ring resonators,” Opt Express 15, 924929 (2007).
http://dx.doi.org/10.1364/OE.15.000924
10.
10. A. Liu, H. Rong, and M. Paniccia, “Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt Express 12, 42614268 (2004).
http://dx.doi.org/10.1364/OPEX.12.004261
11.
11. I. Rukhlenk, M. Premaratne, C. Dissanayake, and G. Agrawal, “Continuous-wave Raman amplification in silicon waveguides: beyond the undepleted pump approximation,” Optics Letters 34, 536538 (2009).
http://dx.doi.org/10.1364/OL.34.000536
12.
12. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, “A continuous-wave Raman silicon laser”, Nature 433, 725728 (2005).
http://dx.doi.org/10.1038/nature03346
13.
13. K. K. Tsia, S. Fathpour, and B. Jalali, “Energy harvesting in silicon wavelength converters,” Opt Express 14, 1232712333 (2006).
http://dx.doi.org/10.1364/OE.14.012327
14.
14. S. Fathpour, K. K. Tsia, and B. Jalali, “Two-Photon Photovoltaic Effect in Silicon,” IEEE J Quantum Electron 43, 12111217 (2007).
http://dx.doi.org/10.1109/JQE.2007.907545
15.
15. R. M. Joseph, P. M. Goorjian, and A. Taflove, “Direct time integration of maxwells equations in two-dimentional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons,” Opt Lett 18, 491493 (1993).
http://dx.doi.org/10.1364/OL.18.000491
16.
16. P. M. Goorjiane, A. Taflove, R. M. Josef, and S. C. Hgness, “Computational Modeling of femtosecond optical solitons from maxwells equations,” IEEE J Quantum electron 28, 24162422 (1992).
http://dx.doi.org/10.1109/3.159548
17.
17. R. M. Joseph, and A. Taflove, “FDTD maxwells equations modeling for nonlinear electrodynamics and optics,” IEEE J Antennas and propagation 45, 364374 (1997).
http://dx.doi.org/10.1109/8.558652
18.
18. C. Koos, M. Fujii, C. G. Poulton, R. Steingrueber, and J. Leuthold, “FDTD –Modelling of Dispersive nonlinear ring resonators: Accuracy studies and experiments,” IEEE J Quantum electron 42, 2151223 (2006).
http://dx.doi.org/10.1109/JQE.2006.883467
19.
19. N. Suzuki, “FDTD Analysis of Two-Photon Absorption and Free-Carrier Absorption in Si High-Index-Contrast Waveguides,” Lightwave tech 25, 24952501 (2007).
http://dx.doi.org/10.1109/JLT.2007.903298
20.
20. I. S. Maksymov, L. F. Marsal, and J. Pallares, “Modeling of two-photon absorption in nonlinear photonic crystal all-optical switch,” Sci Dir Opt Communications 269,137141 (2007).
http://dx.doi.org/10.1016/j.optcom.2006.07.070
21.
21. A. Taflove, and S. C. Hagness, Computational electrodynamics: The Finit-difference Time-domain method, Artech house inc, second edition, 373410 (2000).
22.
22. R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans Antenna and propagation 45, 375391 (1997).
http://dx.doi.org/10.1109/8.558653
23.
23. R. W. Boyd, Nonlinea Optics. Academic press, Third edition, 457462, 190 (2003).
24.
24. R. W. Ziolkowski, and J. B. Judkins, “Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time,” Optics J Soc Amr 10, 186198 (1993).
http://dx.doi.org/10.1364/JOSAB.10.000186
25.
25. J. V. Moloney, and A. C. Newell, Nonlinear Optics. IMA Preprint Series 574, 5866 (1989).
26.
26. R. M. Joseph, and A. Taflove, “Spatial Soliton deflection mechanism indicated by FD-TD maxwells equations modeling,” IEEE photonic tech lett, 6, 12511254 (1994).
http://dx.doi.org/10.1109/68.329654
27.
27. C. H. Lee, P. S. Mak, and A. P. Defonzo, “Optical control of millimeter-wave propagation in dielectric waveguides,” IEEE J Quantum electron 16, 277288 (1980).
http://dx.doi.org/10.1109/JQE.1980.1070567
28.
28. R. Soref, and B. R. B. Ennett, “Electrooptical Effects in Silicon,” IEEE J Quantum electron 23, 123129 (1987).
http://dx.doi.org/10.1109/JQE.1987.1073206
29.
29. R. Soref, and B. R. B. Ennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” Proc SPIE 704, 3237 (1987).
30.
30. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans Antennas Propag 44, 16301639 (1996).
http://dx.doi.org/10.1109/8.546249
31.
31. C. M. Dissanayake, I. D. Rukhlenko, M. Premaratne and G. P. Agrawal, “Raman-Mediated Nonlinear Interactions in Silicon Waveguides: Copropagating and Counterpropagating Pulses,” IEEE Lett Photonics Tech 21, 13721374 (2009).
http://dx.doi.org/10.1109/LPT.2009.2027132
32.
32. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Optics Express 12, 40944102 (2004).
http://dx.doi.org/10.1364/OPEX.12.004094
33.
33. R. Dekker, and A. Driessen, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55μm femtosecond pulses,” Optics Express 14, 83368346 (2006).
http://dx.doi.org/10.1364/OE.14.008336
34.
34. Y. Liu, and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl Phys Lett 90, id. 211105, (2007).
http://dx.doi.org/10.1063/1.2741611
35.
35. J. Piprek, Semiconductor Optoelectronic Devices. Academic Press, 6166 and 145147 (2003).
36.
36. H. Zimmermann, Integrated Silicon Optoelectronics. Springer, Second Edition, 1316 (2009).
37.
37. B. Van. Zeghbroeck, Principles of Semiconductor Devices, ece.cololaro.edu/~bart/book, Chapter 2 (2007).
38.
38. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, B. Jalali, “Carrier Lifetime in Silicon Raman Laser,” Appl Phys Lett, 86, 071115 (2005).
http://dx.doi.org/10.1063/1.1866635
39.
39. M. J. Weber, Handbook of Optical material, CRC Press LLC, (2003).
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3621827
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Spatial arrangement of electric and magnetic-field nodes for TM polarization

Image of FIG. 2.

Click to view

FIG. 2.

Temporal changes of power and carrier density at L=50μm and input power 29pJ

Image of FIG. 3.

Click to view

FIG. 3.

Difference between using constant and variable refractive index in FDTD simulator.

Image of FIG. 4.

Click to view

FIG. 4.

Refractive index change due to Kerr effect for input pulse energy 29pJ and FWHM=200fs.

Image of FIG. 5.

Click to view

FIG. 5.

Refractive index change due to free-carrier plasma effect for input pulse energy 29pJ and FWHM=200fs.

Image of FIG. 6.

Click to view

FIG. 6.

Total refractive index change. Input pulse energy was 6pJ with FWHM=200fs and Imax=32GW/cm2.

Image of FIG. 7.

Click to view

FIG. 7.

Total refractive index change. Input pulse energy was 29pJ with Imax=155GW/cm2, FWHM=200fs

Image of FIG. 8.

Click to view

FIG. 8.

Total refractive index change due to wide input pulse. Input pulse intensity was Imax=155GW/cm2 with FWHM=400fs.

Image of FIG. 9.

Click to view

FIG. 9.

Conductivity change in Si waveguide during pulse propagation by 29pJ with FWHM=200fs, Imax=155GW/cm2.

Image of FIG. 10.

Click to view

FIG. 10.

Conductivity in Si waveguide after the pulse has passed for input 19, 29, 52pJ and Imax=155GW/cm2 with FWHM=200fs.

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3621827
2011-07-22
2014-04-20

Abstract

Attempt to manufacture photonics devices on silicon requires theoretical and numerical prediction. This essay presents Compound FDTD (C-FDTD) method for comprehensive simulation of silicon photonics devices. Although this method is comprehensive, it maintains conventional Yee algorithm. The method involves variation of refractive index due to nonlinear effects. With the help of this simulator, refractive index change due to free-carriers created through two photon absorption and Kerr effect in siliconwaveguide is considered. Results indicate how to choose pump pulse shape to optimum operation of active photonics devices. Also conductivity variation of Si waveguide due to change in free-carrier density is studied. By considering variations in conductivity profile, we are able to design better schemes for sweep free carriers away with reverse bias or nonlinear photovoltaic effect for fast devices and Raman amplifiers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3621827.html;jsessionid=aln8bqgpn5l7f.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3621827&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Compound FDTD method for silicon photonics
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3621827
10.1063/1.3621827
SEARCH_EXPAND_ITEM