Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3621858
1.
1. T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.977
2.
2. O. Geschke, H. Klank, and P. Telleman, Microsystem engineering of lab-on-a-chip devices (Wiley-VCH, Weinheim, 2008).
3.
3. G. T. A. Kovacs, Micromachined transducers sourcebook (McGraw-Hill, New York, 1998).
4.
4. C. Liu and Z. Li, Phys. Rev. Lett. 105, 174501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.174501
5.
5. C. Liu and Z. Li, Phys. Rev. E 80, 036302 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.036302
6.
6. I. Bitsanis, J. J. Magda, M. Tirrell, and H. T. Davis, J. Chem. Phys. 87, 1733 (1987).
http://dx.doi.org/10.1063/1.453240
7.
7. J. Koplik, J. R. Banavar, and J. F. Willemsen, Phys. Fluids A 1, 781 (1989).
http://dx.doi.org/10.1063/1.857376
8.
8. S. A. Somers and H. T. Davis, J. Chem. Phys. 96, 5389 (1992).
http://dx.doi.org/10.1063/1.462724
9.
9. U. Heinbuch and J. Fischer, Phys. Rev. A 40, 1144 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.1144
10.
10. M. Sun and C. Ebner, Phys. Rev. Lett. 69, 3491 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3491
11.
11. J. L. Barrat and L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4671
12.
12. P. A. Thompson and M. O. Robbins, Phys. Rev. A 41, 6830 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.6830
13.
13. P. A. Thompson and S. M. Troian, Nature 389, 360 (1997).
http://dx.doi.org/10.1038/39475
14.
14. M. Cieplak, J. Koplik, and J. R. Banavar, Phys. Rev. Lett. 86, 803 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.803
15.
15. Y. X. Zhu and S. Granick, Phys. Rev. Lett. 88, 106102 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.106102
16.
16. T. M. Galea and P. Attard, Langmuir 20, 3477 (2004).
http://dx.doi.org/10.1021/la035880k
17.
17. R. S. Voronov, D. V. Papavassiliou, and L. L. Lee, J. Chem. Phys. 124, 204701 (2006).
http://dx.doi.org/10.1063/1.2194019
18.
18. N. V. Priezjev, Phys. Rev. E 75, 051605 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.051605
19.
19. K. P. Travis, B. D. Todd, and D. J. Evans, Phys. Rev. E 55, 4288 (1997).
http://dx.doi.org/10.1103/PhysRevE.55.4288
20.
20. J. S. Hansen, P. J. Daivis, and B. D. Todd, Phys. Rev. E 80, 046322 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.046322
21.
21. N. Naguib, H. Ye, Y. Gogotsi, A. G. Yazicioglu, C. M. Megaridis, and M. Yoshimura, Nano Lett. 4, 2237 (2004).
http://dx.doi.org/10.1021/nl0484907
22.
22. C. M. Megaridis, A. G. Yazicioglu, J. A. Libera, and Y. Gogotsi, Phys. Fluids 14, L5 (2002).
http://dx.doi.org/10.1063/1.1429249
23.
23. H. Takaba, Y. Onumata, and S. Nakao, J. Chem. Phys. 127, 054703 (2007).
http://dx.doi.org/10.1063/1.2749236
24.
24. J. A. Thomas and A. J. H. McGaughey, Nano Lett. 8, 2788 (2008).
http://dx.doi.org/10.1021/nl8013617
25.
25. J. A. Thomas and A. J. H. McGaughey, Phys. Rev. Lett. 102, 184502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.184502
26.
26. Z. Zhang, H. Zhang, and H. Ye, Appl. Phys. Lett. 95, 154101 (2009).
http://dx.doi.org/10.1063/1.3247892
27.
27. C. Huang, P. Y. K. Choi, K. Nandakumar, and L. W. Kostiuk, J. Chem. Phys. 126, 224702 (2007).
http://dx.doi.org/10.1063/1.2739541
28.
28. Z. G. Li and H. Wang, Phys. Rev. Lett. 95, 014502 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.014502
29.
29. C. Liu and Z. Li, J. Chem. Phys. 132, 024507 (2010).
http://dx.doi.org/10.1063/1.3292682
30.
30. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.22
31.
31. H. Hippler, J. Troe, and H. J. Wendelken, J. Chem. Phys. 78, 6709 (1983).
http://dx.doi.org/10.1063/1.444670
32.
32. Y. Liu and T. Ichiye, J. Phys. Chem. 100, 2723 (1996).
http://dx.doi.org/10.1021/jp952324t
33.
33. Z. Li and H. Wang, Phys. Rev. E 68, 061207 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.061207
34.
34. P. M. Agrawal, B. M. Rice, and D. L. Thompson, Surf. Sci. 515, 21 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01916-7
35.
35. M. P. Allen and D. J. Tildesley, Computer simulation of liquids (Oxford University Press, New York, 1987).
36.
36. Z. Li, Phys. Rev. E 80, 061204 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.061204
37.
37. Z. Li, Phys. Rev. E 79, 026312 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.026312
38.
38. C. Liu, H. B. Fan, K. Zhang, M. M. F. Yuen, and Z. Li, J. Chem. Phys. 132, 094703 (2010).
http://dx.doi.org/10.1063/1.3327931
39.
39. A. Martini, H. Hsu, N. A. Patankar, and S. Lichter, Phys. Rev. Lett. 100, 206001 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206001
40.
40. K. P. Travis and K. E. Gubbins, J. Chem. Phys. 112, 1984 (2000).
http://dx.doi.org/10.1063/1.480758
41.
41. C. K. Huang, K. Nandakumar, P. Y. K. Choi, and L. W. Kostiuk, J. Chem. Phys. 124, 234701 (2006).
http://dx.doi.org/10.1063/1.2209236
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3621858
Loading
/content/aip/journal/adva/1/3/10.1063/1.3621858
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3621858
2011-07-22
2016-09-29

Abstract

In this work, we investigate the validity of the Navier-Stokes (NS) equations for nanoscale liquidflows through molecular dynamics simulations. We focus on the role of channel size by considering the fluid-wall interaction.Liquidflows between two planar parallel walls driven by an external force with channel size ranging from 2 to 80 nm are studied. The volumetric flux is computed and the dependence of the volumetric flux on the channel size is explained both qualitatively and quantitatively. It is found that the flow is sensitive to the fluid-wall binding energy and the classical fluid mechanics falls apart in small nanochannels. However, the wall effects become insignificant and the NS equations are valid when the channel size is larger than about 150 molecular diameters (∼ 50 nm).

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3621858.html;jsessionid=JKArRkeIjYm7zLpu628fKa45.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3621858&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3621858&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3621858'
Right1,Right2,Right3,