1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Surface spin glass and exchange bias effect in Sm0.5Ca0.5MnO3 manganites nano particles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3623428
1.
1. E. Dagotto, Science 309, 257 (2005).
http://dx.doi.org/10.1126/science.1107559
2.
2. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
3.
3. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, Phys. Rep. 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
4.
4. S. G. E. te Velthuis et al. Appl. Phys. Lett. 75, 4174 (1999).
http://dx.doi.org/10.1063/1.125573
5.
5. D. Niebieskikwiat and M. B. Salamon, Phys. Rev. B 72, 174422 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174422
6.
6. T. Qian, G. Li, T. Zhang, T. F. Zhou, X. Q. Xiang, X. W. Kang, and X. G. Li, Appl. Phys. Lett. 90, 012503 (2007).
http://dx.doi.org/10.1063/1.2426887
7.
7. Y.-k. Tang, Y. Sun, and Z.-h. Cheng, J. Appl. Phys. 100, 023914 (2006).
http://dx.doi.org/10.1063/1.2219698
8.
8. S. S. Rao, S. Tripathi, D. Pandey, and S. V. Bhat, Phys. Rev. B 74, 144416 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.144416
9.
9. S. K. Giri, and T. K. Nath, J. Nanosci. Nanotechnol. 11, 48064814 (2011)
10.
10. Y. Tokura, Y. Tomioka, J. Mag. Mag. Mat. 200, 123 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00352-2
11.
11. T. Sarkar, A. K. Raychaudhuri, and T. Chatterji, Appl. Phys. Lett. 92, 123104 (2008).
http://dx.doi.org/10.1063/1.2902317
12.
12. S. Kundu, T. K. Nath, A. K. Nigam and A. Taraphder, in Recent Advances in Correlated Systems, Conference in IIT Guwahati (18-20 January, 2010).
13.
13. Z. Jirák, E. Hadová, O. Kaman, K. Knížek, M. Maryško, and E. Pollert, Phys. Rev. B 81, 024403 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.024403
14.
14. M. Muroi, P. G. McCormick, and R. Street, Rev. Adv. Mater. Sci. 5, 76 (2003).
15.
15. S. Dong, F. Gao, Z. Q. Wang, J.-M. Liu, and Z. F. Ren, Appl. Phys. Lett. 90, 082508 (2007).
http://dx.doi.org/10.1063/1.2709911
16.
16. S. M. Zhou et al. Appl. Phys. Lett. 93, 182509 (2008).
http://dx.doi.org/10.1063/1.3021370
17.
17. M. Patra, S. Majumdar and S. Giri, E. Phys. Lett. 87, 58002 (2009).
http://dx.doi.org/10.1209/0295-5075/87/58002
18.
18. P. Dey and T. K. Nath, Phys. Rev. B 73, 214425 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.214425
19.
19. D. P. Kozlenko, L. S. Dubrovinsky, I. N. Goncharenko, B. N. savenko, V. I. Voronin, E. A. Kiselev, and N. V. Proskurnina, Phys. Rev. B 75, 10440811044086 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.104408
20.
20. J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor and Francis, London, 1993).
21.
21. Ch. Binek, Phys. Rev. B 70, 014421 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.014421
22.
22. K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, Phys. Rev. Lett. 79, 1130 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1130
22.A. Hoffmann, J. W. Seo, M. R. Fitzsimmons, H. Siegwart, J. Fompeyrine, J.-P. Locquet, J. A. Dura, and C. F. Majkrzak, Phys. Rev. B 66, 220406 (R) (2002).
http://dx.doi.org/10.1103/PhysRevB.66.220406
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3623428
Loading
/content/aip/journal/adva/1/3/10.1063/1.3623428
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3623428
2011-07-27
2014-11-23

Abstract

In this letter, we report that the charge/orbital order state of bulk antiferromagnetic Sm0.5Ca0.5MnO3 is suppressed and confirms the appearance of weak ferromagnetism below 65 K followed by a low temperature spin glass like transition at 41 K in its nano metric counterpart. Exchange anisotropy effect has been observed in the nano manganites and can be tuned by the strength of the cooling magnetic field (Hcool). The values of exchange fields (HE), coercivity (HC), remanence asymmetry (ME) and magnetic coercivity (MC) are found to strongly depend on cooling magnetic field and temperature. HE increases with increasing Hcool but for larger Hcool, HE tends to decrease due to the growth of ferromagnetic cluster size. Magnetic training effect has also been observed and it has been analyzed thoroughly using spin relaxation model. A proposed phenomenological core-shell type model is attributed to an exchange coupling between the spin-glass like shell (surrounding) and antiferromagnetic core of Sm0.5Ca0.5MnO3 nano manganites mainly on the basis of uncompensated surface spins. Results suggest that the intrinsic phase inhomogeneity due to the surface effects of the nanostructured manganites may cause exchange anisotropy, which is of special interests for potential application in multifunctional spintronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3623428.html;jsessionid=2i046lo7n0816.x-aip-live-02?itemId=/content/aip/journal/adva/1/3/10.1063/1.3623428&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Surface spin glass and exchange bias effect in Sm0.5Ca0.5MnO3 manganites nano particles
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3623428
10.1063/1.3623428
SEARCH_EXPAND_ITEM