1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Surface spin glass and exchange bias effect in Sm0.5Ca0.5MnO3 manganites nano particles
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3623428
1.
1. E. Dagotto, Science 309, 257 (2005).
http://dx.doi.org/10.1126/science.1107559
2.
2. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
3.
3. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, Phys. Rep. 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
4.
4. S. G. E. te Velthuis et al. Appl. Phys. Lett. 75, 4174 (1999).
http://dx.doi.org/10.1063/1.125573
5.
5. D. Niebieskikwiat and M. B. Salamon, Phys. Rev. B 72, 174422 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174422
6.
6. T. Qian, G. Li, T. Zhang, T. F. Zhou, X. Q. Xiang, X. W. Kang, and X. G. Li, Appl. Phys. Lett. 90, 012503 (2007).
http://dx.doi.org/10.1063/1.2426887
7.
7. Y.-k. Tang, Y. Sun, and Z.-h. Cheng, J. Appl. Phys. 100, 023914 (2006).
http://dx.doi.org/10.1063/1.2219698
8.
8. S. S. Rao, S. Tripathi, D. Pandey, and S. V. Bhat, Phys. Rev. B 74, 144416 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.144416
9.
9. S. K. Giri, and T. K. Nath, J. Nanosci. Nanotechnol. 11, 48064814 (2011)
10.
10. Y. Tokura, Y. Tomioka, J. Mag. Mag. Mat. 200, 123 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00352-2
11.
11. T. Sarkar, A. K. Raychaudhuri, and T. Chatterji, Appl. Phys. Lett. 92, 123104 (2008).
http://dx.doi.org/10.1063/1.2902317
12.
12. S. Kundu, T. K. Nath, A. K. Nigam and A. Taraphder, in Recent Advances in Correlated Systems, Conference in IIT Guwahati (18-20 January, 2010).
13.
13. Z. Jirák, E. Hadová, O. Kaman, K. Knížek, M. Maryško, and E. Pollert, Phys. Rev. B 81, 024403 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.024403
14.
14. M. Muroi, P. G. McCormick, and R. Street, Rev. Adv. Mater. Sci. 5, 76 (2003).
15.
15. S. Dong, F. Gao, Z. Q. Wang, J.-M. Liu, and Z. F. Ren, Appl. Phys. Lett. 90, 082508 (2007).
http://dx.doi.org/10.1063/1.2709911
16.
16. S. M. Zhou et al. Appl. Phys. Lett. 93, 182509 (2008).
http://dx.doi.org/10.1063/1.3021370
17.
17. M. Patra, S. Majumdar and S. Giri, E. Phys. Lett. 87, 58002 (2009).
http://dx.doi.org/10.1209/0295-5075/87/58002
18.
18. P. Dey and T. K. Nath, Phys. Rev. B 73, 214425 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.214425
19.
19. D. P. Kozlenko, L. S. Dubrovinsky, I. N. Goncharenko, B. N. savenko, V. I. Voronin, E. A. Kiselev, and N. V. Proskurnina, Phys. Rev. B 75, 10440811044086 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.104408
20.
20. J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor and Francis, London, 1993).
21.
21. Ch. Binek, Phys. Rev. B 70, 014421 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.014421
22.
22. K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, Phys. Rev. Lett. 79, 1130 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1130
22.A. Hoffmann, J. W. Seo, M. R. Fitzsimmons, H. Siegwart, J. Fompeyrine, J.-P. Locquet, J. A. Dura, and C. F. Majkrzak, Phys. Rev. B 66, 220406 (R) (2002).
http://dx.doi.org/10.1103/PhysRevB.66.220406
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3623428
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Rietveld refinement (HRXRD) of XRD patterns of the SCMO550 sample. Inset shows the FESEM image of SCMOBULK sample. (b) TEM micrographs of SCMO550 sample. (c) The histogram showing the size distribution of SCMO550 nanoparticles. Inset shows the SAED pattern of SCMO550 nanoparticles. (d) HRTEM image of a single particle (single crystalline) of SCMO550 nanocrystals.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) Magnetization vs. temperature plots of SCMOBULK and SCMO550 samples. Inset shows the dM/dT vs. temperature plot of SCMO550 sample. (b) The real part of linear ac susceptibility vs. temperature plot of SCMO550 sample in case of frequency variation. Lower inset shows the real part of non-linear ac susceptibility vs. temperature plot of SCMO550 sample.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) (a) Plot of log (1/ƒ) as a function of freezing temperature Tƒ. Upper inset shows the variation of Tƒ with frequency. Lower inset shows the imaginary part of linear ac susceptibility vs. temperature plot of SCMO550 sample. (b) M-H curves of SCMO550 sample at different cooling fields at 5 K. Upper inset shows the M-H plot of SCMO550 sample at 5 K. Lower inset shows the M-H plot of SCMOBULK sample at 5 K.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) (a) The number of field cycles n dependences of HE and ME (open symbol) at 5 K after FC in 7 kOe magnetic field. The solid lines show the best fitting with the power law to the data for n ≥ 2. The solid symbols show the data originated from the Eq. (1) (see the text). (b) The variation of exchange bias parameter HE and ME with temperature after FC with magnetic field 7 kOe. (c) HE and HC vs. Cooling field (Hcool) plot of SCMO550 sample. (d) The ME and MC vs. cooling field plot of SCMO550 sample. Inset shows the plot of scaled vertical shift with horizontal shift described in the text.

Image of FIG. 5.

Click to view

FIG. 5.

(Color online) The schematic representation of the phenomenological model for CO/AFM bulk manganites and the corresponding nanograins.

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3623428
2011-07-27
2014-04-25

Abstract

In this letter, we report that the charge/orbital order state of bulk antiferromagnetic Sm0.5Ca0.5MnO3 is suppressed and confirms the appearance of weak ferromagnetism below 65 K followed by a low temperature spin glass like transition at 41 K in its nano metric counterpart. Exchange anisotropy effect has been observed in the nano manganites and can be tuned by the strength of the cooling magnetic field (Hcool). The values of exchange fields (HE), coercivity (HC), remanence asymmetry (ME) and magnetic coercivity (MC) are found to strongly depend on cooling magnetic field and temperature. HE increases with increasing Hcool but for larger Hcool, HE tends to decrease due to the growth of ferromagnetic cluster size. Magnetic training effect has also been observed and it has been analyzed thoroughly using spin relaxation model. A proposed phenomenological core-shell type model is attributed to an exchange coupling between the spin-glass like shell (surrounding) and antiferromagnetic core of Sm0.5Ca0.5MnO3 nano manganites mainly on the basis of uncompensated surface spins. Results suggest that the intrinsic phase inhomogeneity due to the surface effects of the nanostructured manganites may cause exchange anisotropy, which is of special interests for potential application in multifunctional spintronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3623428.html;jsessionid=8jq84qfq7lr7m.x-aip-live-01?itemId=/content/aip/journal/adva/1/3/10.1063/1.3623428&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Surface spin glass and exchange bias effect in Sm0.5Ca0.5MnO3 manganites nano particles
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3623428
10.1063/1.3623428
SEARCH_EXPAND_ITEM