Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Filrsov, Science 306, 666 (2004).
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
3. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
4. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 1 (2009).
5. K. Nomura and A. H. MacDonald. Phys. Rev. Lett. 96, 256602 (2006).
6. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat. Phys. 4, 377 (2008).
7. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, H. D. Lee, F. Guinea, A. H. C. Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).
8. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
9. L. Liao, J. W. Bai, R. Cheng, Y. C. Lin, S. Jiang, Y. Huang, and X. F. Duan, Nano Lett. 10, 1917 (2010).
10. Q. Chen, H. Huang, W. Chen, A. T. S. Wee, Y. P. Feng, J. W. Chai, Z. Zhang, J. S. Pan, and S. J. Wang, Appl. Phys. Lett. 96, 072111 (2010).
11. L. Liao, J. W. Bai, Y. C. Lin, Y. Q. Qu, Y. Huang, and X. F. Duan, Adv. Mater. 22, 1941 (2010).
12. L. Liao, J. W. Bai, Y. Q. Qu, Y. C. Lin, Y. J. Li, Y. Huang, and X. F. Duan, Proc. Natl Acad. Sci. USA 107, 6711 (2010).
13. Z. X. Wang, H. L. Xu, Z. Z. Zhang, S. Wang, L. Ding, Q. S. Zeng, L. J. Yang, T. Pei, X. L. Liang, M. Gao, and L. M. Peng, Nano Lett. 10, 2024 (2010).
14. T. P. Ma, IEEE Trans. Electron Devices. 45, 680 (1998).
15. X. S. Wang, G. J. Zhai, J. S. Yang, and N. Cui, Phys. Rev. B 60, R2146 (1999).
16. M. Yang, S. J. Wang, Y. P. Feng, G. W. Peng, and Y. Y. Sun, J. Appl. Phys. 102, 013507 (2007).
17. M. Yang, R. Q. Wu, W. S. Deng, L. Shen, Z. D. Sha, Y. Q. Cai, Y. P. Feng, and S. J. Wang, J. Appl. Phys. 105, 024108 (2009).
18. W. J. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, Nano Lett. 10, 3572 (2010).
19. S. K. Min, W. Y. Kim, Y. Cho, and K. S. Kim, Nat. Nanotechnol. 6, 162 (2011).
20. G. Kresse and H. Hafner, Phys. Rev. B, 47, 558 (1993)
21. G. Kresse and H. Hafner, Phys. Rev. B 48, 13115 (1994).
22. P. E. Blöchl, Phys. Rev. B. 50, 17953 (1994).
23. J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).
24. M. Yang, A. Nurbawono, C. Zhang, Y. P. Feng, and Ariando, Appl. Phys. Lett. 96, 193115 (2010).
25. J. Zhou, Q. Wang, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 11, 3867 (2009).
26. M. Z. Hossaina, Appl. Phys. Lett. 95, 143125 (2009).
27. Y. J. Kang, J. Kang, and K. J. Chang, Phys. Rev. B 78, 115404 (2008).
28. F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, C. Naud, and P. Mallet, Phys. Rev. Lett. 99, 126805 (2007).
29. M. Ishigmi, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7, 1643 (2007).
30. X. Wu, M. C. Vargas, S. Nayak, V. Lotrich, and G. Scoles, J. Chem. Phys. 115, 8748 (2001).
31. G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 254 (2006).
32. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. Nilsson, F. Guinea, A. K. Geim, and A. H. C. Neto, Phys. Rev. Lett 99, 216802 (2007).
33. D. K. Samarakoon and X. Q. Wang, ACS Nano 4, 4126 (2010).
34. J. Xue, J. Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Herrero, and B. J. LeRoy, Nat. Mater. 10, 282 (2011).

Data & Media loading...


Article metrics loading...



One of the most severe limits in future design of graphene-based electronic devices is that when supported on a substrate, the electron mobility of graphene is often reduced by an order of magnitude or more. In this paper, via theoretical calculations, we show that the non-polar β-Si3N4 (0001) surface may be an excellent support for both single-layer or bi-layer graphene to overcome this limit. Since the high-κ dielectric material is an indispensable component in integrated circuits, the silicon nitride supported graphene as discussed in this paper may provide an ideal platform for future graphene-based electronics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd