Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3623567
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Filrsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
3.
3. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
4.
4. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 1 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1
5.
5. K. Nomura and A. H. MacDonald. Phys. Rev. Lett. 96, 256602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.256602
6.
6. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nat. Phys. 4, 377 (2008).
http://dx.doi.org/10.1038/nphys935
7.
7. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. De Heer, H. D. Lee, F. Guinea, A. H. C. Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).
http://dx.doi.org/10.1038/nmat2003
8.
8. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.016602
9.
9. L. Liao, J. W. Bai, R. Cheng, Y. C. Lin, S. Jiang, Y. Huang, and X. F. Duan, Nano Lett. 10, 1917 (2010).
http://dx.doi.org/10.1021/nl100840z
10.
10. Q. Chen, H. Huang, W. Chen, A. T. S. Wee, Y. P. Feng, J. W. Chai, Z. Zhang, J. S. Pan, and S. J. Wang, Appl. Phys. Lett. 96, 072111 (2010).
http://dx.doi.org/10.1063/1.3327834
11.
11. L. Liao, J. W. Bai, Y. C. Lin, Y. Q. Qu, Y. Huang, and X. F. Duan, Adv. Mater. 22, 1941 (2010).
12.
12. L. Liao, J. W. Bai, Y. Q. Qu, Y. C. Lin, Y. J. Li, Y. Huang, and X. F. Duan, Proc. Natl Acad. Sci. USA 107, 6711 (2010).
http://dx.doi.org/10.1073/pnas.0914117107
13.
13. Z. X. Wang, H. L. Xu, Z. Z. Zhang, S. Wang, L. Ding, Q. S. Zeng, L. J. Yang, T. Pei, X. L. Liang, M. Gao, and L. M. Peng, Nano Lett. 10, 2024 (2010).
http://dx.doi.org/10.1021/nl100022u
14.
14. T. P. Ma, IEEE Trans. Electron Devices. 45, 680 (1998).
http://dx.doi.org/10.1109/16.661229
15.
15. X. S. Wang, G. J. Zhai, J. S. Yang, and N. Cui, Phys. Rev. B 60, R2146 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.R2146
16.
16. M. Yang, S. J. Wang, Y. P. Feng, G. W. Peng, and Y. Y. Sun, J. Appl. Phys. 102, 013507 (2007).
http://dx.doi.org/10.1063/1.2747214
17.
17. M. Yang, R. Q. Wu, W. S. Deng, L. Shen, Z. D. Sha, Y. Q. Cai, Y. P. Feng, and S. J. Wang, J. Appl. Phys. 105, 024108 (2009).
http://dx.doi.org/10.1063/1.3072625
18.
18. W. J. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, Nano Lett. 10, 3572 (2010).
http://dx.doi.org/10.1021/nl101832y
19.
19. S. K. Min, W. Y. Kim, Y. Cho, and K. S. Kim, Nat. Nanotechnol. 6, 162 (2011).
http://dx.doi.org/10.1038/nnano.2010.283
20.
20. G. Kresse and H. Hafner, Phys. Rev. B, 47, 558 (1993)
http://dx.doi.org/10.1103/PhysRevB.47.558
21.
21. G. Kresse and H. Hafner, Phys. Rev. B 48, 13115 (1994).
http://dx.doi.org/10.1103/PhysRevB.48.13115
22.
22. P. E. Blöchl, Phys. Rev. B. 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
23.
23. J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.16067
24.
24. M. Yang, A. Nurbawono, C. Zhang, Y. P. Feng, and Ariando, Appl. Phys. Lett. 96, 193115 (2010).
http://dx.doi.org/10.1063/1.3425664
25.
25. J. Zhou, Q. Wang, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 11, 3867 (2009).
http://dx.doi.org/10.1021/nl9020733
26.
26. M. Z. Hossaina, Appl. Phys. Lett. 95, 143125 (2009).
http://dx.doi.org/10.1063/1.3247964
27.
27. Y. J. Kang, J. Kang, and K. J. Chang, Phys. Rev. B 78, 115404 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115404
28.
28. F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, C. Naud, and P. Mallet, Phys. Rev. Lett. 99, 126805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.126805
29.
29. M. Ishigmi, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7, 1643 (2007).
http://dx.doi.org/10.1021/nl070613a
30.
30. X. Wu, M. C. Vargas, S. Nayak, V. Lotrich, and G. Scoles, J. Chem. Phys. 115, 8748 (2001).
http://dx.doi.org/10.1063/1.1412004
31.
31. G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 254 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.04.010
32.
32. E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. Nilsson, F. Guinea, A. K. Geim, and A. H. C. Neto, Phys. Rev. Lett 99, 216802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216802
33.
33. D. K. Samarakoon and X. Q. Wang, ACS Nano 4, 4126 (2010).
http://dx.doi.org/10.1021/nn1007868
34.
34. J. Xue, J. Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Herrero, and B. J. LeRoy, Nat. Mater. 10, 282 (2011).
http://dx.doi.org/10.1038/nmat2968
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3623567
Loading
/content/aip/journal/adva/1/3/10.1063/1.3623567
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3623567
2011-07-27
2016-12-11

Abstract

One of the most severe limits in future design of graphene-based electronic devices is that when supported on a substrate, the electron mobility of graphene is often reduced by an order of magnitude or more. In this paper, via theoretical calculations, we show that the non-polar β-Si3N4 (0001) surface may be an excellent support for both single-layer or bi-layer graphene to overcome this limit. Since the high-κ dielectric material is an indispensable component in integrated circuits, the silicon nitride supported graphene as discussed in this paper may provide an ideal platform for future graphene-based electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3623567.html;jsessionid=1KPdVwOVuqBcNuXnmTJkNISY.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3623567&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3623567&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3623567'
Right1,Right2,Right3,