Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3623737
1.
1. L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald, Nature 442, 904 (2006).
http://dx.doi.org/10.1038/nature05037
2.
2. P. Gangopadhay, R. Kesavamoorthy, S. Bera, P. Magudapathy, K. G. M. Nair, B. K. Panigrahi, and S. V. Narasimhan, Phys. Rev. Lett. 94, 047403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.047403
3.
3. S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, Nano Lett. 6, 1687 (2006).
http://dx.doi.org/10.1021/nl060865w
4.
4. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon. 2, 365 (2008).
http://dx.doi.org/10.1038/nphoton.2008.78
5.
5. F. Reng, C. Jiang, C. Liu, D. Fu, Y. Shi, Solid State Comm. 135, 268 (2005).,
http://dx.doi.org/10.1016/j.ssc.2005.04.013
5.S. K. Srivastava, P. Gangopadhay, S. Bera, T. N. Sairam, K. G. M. Nair, B. K. Panigrahi, and S. V. Narasimhan, J. Nanosci. Nanotech. 9, 5376 (2009).
http://dx.doi.org/10.1166/jnn.2009.1122
6.
6. S. T. Selvan, T. Hayakawa, M. Nogami, Y. Kobayashi, L. M. Liz-Marzán, Y. Hamanaka, and A. Nakamura, J. Phys. Chem. B, 106, 10157 (2002).,
http://dx.doi.org/10.1021/jp020860x
6.O. Akhavan, R. Azimirad, and A. Z. Moshfegh, J. Phys. D: Appl. Phys. 41, 195305 (2008).
http://dx.doi.org/10.1088/0022-3727/41/19/195305
7.
7. A. Miotello, M. Bonelli, G. De. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, Appl. Phys. Lett. 79, 2456 (2001).,
http://dx.doi.org/10.1063/1.1406984
7.E. Trave, F. Gonella, P. Calvelli, E. Cattaruzza, P. Canton, D. Cristofori, A. Quaranta, and G. Pellegrini, Nucl. Instr. and Meth. B 268, 3177 (2010).
http://dx.doi.org/10.1016/j.nimb.2010.05.082
8.
8. G. Parravicinia, A. Stella, M. Ungureanu, and R. Kofman, Appl. Phys. Lett. 85, 302 (2004).
http://dx.doi.org/10.1063/1.1772872
9.
9. W. H. Hung, M. Aykol, D. Valley, W. Hou, and S. B. Cronin, Nano Lett. 10, 1314 (2010).
http://dx.doi.org/10.1021/nl9041214
10.
10. A. P. Alivisatos, Nat. Biotech. 22, 47 (2004).
http://dx.doi.org/10.1038/nbt927
11.
11. K. Li, M. I. Stockman, and D. J. Bergman, Phys. Rev. Lett. 91, 227402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.227402
12.
12. Naomi J. Halas, Nano Lett. 10, 3816 (2010).
http://dx.doi.org/10.1021/nl1032342
12.P. Nagpal, N. Lindquist, S. Oh, and D. Norris, Science 325, 594 (2009).
http://dx.doi.org/10.1126/science.1174655
13.
13. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, Appl. Phys. Lett. 84, 4938 (2004).
http://dx.doi.org/10.1063/1.1760229
13.D. Faccio, P. DI. Trapani, E. Borsella, F. Gonella, P. Mazzoldi, and A. M. Malvezzi, Europhys. Lett. 213, 43 (1998).
14.
14. F. Gonella, and P. Mazzoldi, in Handbook of Nanostructured Materials and Nanotechnology vol. 4, p81 (2000), ed. H S Nalwa (CA, Academic Press)
15.
15. F. Gonella, Rev. Adv. Mater. Sci. 14, 134 (2007).
16.
16. H. H. Chen, O. A. Urquidez, S. Ichim, L. H. Rodriquez, M. P. Brenner, and M. J. Aziz, Science 310, 294 (2005).
http://dx.doi.org/10.1126/science.1117219
17.
17. W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, Academic Press, New York, 1978.
18.
18. Thompson, M. W. ; Defects and Radiation Damage in Metals, University Press, Cambridge, 1969.
19.
19. L. R. Doolittle, Nucl. Instr. and Meth. B 9, 344 (1985).
http://dx.doi.org/10.1016/0168-583X(85)90762-1
20.
20. A. Miotello, G. De. Marchi, G. Mattei, P. Mazzoldi, and A. Quaranta, Appl. Phys. A 70, 415 (2000).
http://dx.doi.org/10.1007/s003390051059
21.
21. M. Nastasi, J. W. Mayer, and J. K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications, University Press, Cambridge, 1996.
22.
22. J. C. Pivin, M. A. Garcia, J. Llopis, and H. Hofmeister, Nucl. Instr. and Meth. B, 191, 794 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)00655-9
23.
23. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, 1995.
24.
24. C. Kittel, Introduction to Solid State Physics, Wiley Eastern, India, 1985.
25.
25. E. Duval, A. Boukenter, and B. Champagnon, Phys. Rev. Lett. 56, 2052 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.2052
26.
26. P. Gangopadhay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, Appl. Phys. Lett. 90, 063108 (2007).
http://dx.doi.org/10.1063/1.2434158
27.
27. P. Gangopadhay, P. Magudapathy, R. Kesavamoorthy, B. K. Panigrahi, K. G. M. Nair, and P. V. Satyam, Chem. Phys. Lett. 388, 416 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.03.055
28.
28. G. Pacchioni, L. Skuja, and D. L. Griscom, (ed) Defects in SiO2 and Related Dielectrics: Science and Technology (NATO Science Series II vol 2), Kluwer, Dordrecht, 2000.
29.
29. I. M. Lifshitz, and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).
http://dx.doi.org/10.1016/0022-3697(61)90054-3
30.
30. C. Wagner, Z. Elektrochem. 65, 581 (1961).
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3623737
Loading
/content/aip/journal/adva/1/3/10.1063/1.3623737
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3623737
2011-07-27
2016-12-07

Abstract

The present article explores an experimental study for nucleation and non-equilibrium growth of silvernanoparticles in a soda-glass matrix. Ion-irradiation induced recoiling of silver atoms with argon ions (at energy 100 keV) facilitates nucleation as well as growth of the silvernanoparticles in the soda-glass matrix. Small growth of the silvernanoparticles in the soda-glass matrix has been experimentally observed after the irradiation with higher fluences of the argon ions. Role of the argon ions for the evolution of the silvernanoparticles in the soda-glass matrix has been elucidated in the present report. With increase of the argon-ion fluences, while slight athermal growth of the silvernanoparticles has been estimated, drastic increase in the optical responses and Rutherford backscattering(RBS) yields of the silvernanoparticles have been observed in the sample with the maximum fluences. Possible correlations of increase of argon-ion fluences and the observed experimental results (optical and RBS, in particular) have been explained in this article. Although it has been demonstrated using the silvermetal film on a soda-glass substrate as a model example, the non-equilibrium approach of nucleation and ion-beam controlled growth of metalnanoparticles in a matrix should be applicable to other immiscible systems as well.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3623737.html;jsessionid=zgr0nSABX7dFzH9NijlpWG6e.x-aip-live-02?itemId=/content/aip/journal/adva/1/3/10.1063/1.3623737&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3623737&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3623737'
Right1,Right2,Right3,