Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3624554
1.
1. P. S. Shah, L. T. Fan, I. C. Kao, L. E. Erickson, Adv. Appl. Microbiol. 15, 367 (1972).
http://dx.doi.org/10.1016/S0065-2164(08)70097-2
2.
2. J. Y. Park, L. M. Blair, Chem. Eng. Sci. 30, 1057 (1975).
http://dx.doi.org/10.1016/0009-2509(75)87007-2
3.
3. P. J. Rourke, F. V. Bracco, Institute of Mechanical Engineering Publications 101 (1980).
4.
4. S. G. Bradley, C. D. Stow, Philos. Trans. R. Soc. London Ser. A 287, 635 (1978).
http://dx.doi.org/10.1098/rsta.1978.0001
5.
5. G. B. Foote, J. Atmos. Sci. 32, 390 (1974).
http://dx.doi.org/10.1175/1520-0469(1975)032<0390:TWDRPD>2.0.CO;2
6.
6. Y. J. Jiang, A. Umemura, C. K. Law, J. Fluid Mech. 234, 171 (1992).
http://dx.doi.org/10.1017/S0022112092000740
7.
7. M. R. Nobari, Y. J. Jan, G. Tryggvason, Phys. Fluids 8, 29 (1996).
http://dx.doi.org/10.1063/1.868812
8.
8. A. Menchaca-Rocha, F. Huidobro, A. Martinez-Davalos, K. Michaelian, A. Perez, V. Rodriguez, N. Carjan, J. Fluid Mech. 346, 291 (1997).
http://dx.doi.org/10.1017/S002211209700640X
9.
9. J. Eggers, J. R. Lister, H. A. Stone, J. Fluid Mech. 401, 293 (1999).
http://dx.doi.org/10.1017/S002211209900662X
10.
10. L. Roisman, Phys. Fluids 16, 3438 (2004).
http://dx.doi.org/10.1063/1.1777584
11.
11. C. Gotaas, P. Havelka, H. Jakobsen, H. Svendsen, Phys. Fluids 19, 1 (2007).
12.
12. L. Roisman, E. Berberovic, C. Tropea, Phys. Fluids 21, 1 (2009).
13.
13. N. Ashgriz, J. Y. Poo, J. Fluid Mech. 221, 183 (1990).
http://dx.doi.org/10.1017/S0022112090003536
14.
14. J. Qian, C. K. Law, J. Fluid Mech. 331, 59 (1997).
http://dx.doi.org/10.1017/S0022112096003722
15.
15. C. Gotaas, P. Havelka, H. Jakobsen, H. Svendsen M. Hase, N. Roth, B. Weigand, Phys. Fluids 19, 1 (2007).
16.
16. N. Ashgriz, P. Givi, Int. J. Heat Fluid Flow 8, 205 (1987).
http://dx.doi.org/10.1016/0142-727X(87)90029-4
17.
17. N. Ashgriz, P. Givi, Int. Commun. Heat Mass Transfer 16, 11 (1989).
http://dx.doi.org/10.1016/0735-1933(89)90037-7
18.
18. G. Brenn, A. Frohn, Exp. Fluids 7, 441 (1989).
http://dx.doi.org/10.1007/BF00187061
19.
19. A. Acevedo-Malavé, M. García-Sucre, INTECH Publisher (2011). Submitted.
20.
20. LB. Lucy, Astron J 82, 1013 (1977).
http://dx.doi.org/10.1086/112164
21.
21. RA. Gingold, JJ. Monaghan, Roy Astronom Soc 181, 375 (1977).
22.
22. W. Benz, Asphaug, Icarus 1233, 98 (1994).
http://dx.doi.org/10.1006/icar.1994.1009
23.
23. W. Benz, Asphaug, Comput Phys Commun 87, 253 (1995).
http://dx.doi.org/10.1016/0010-4655(94)00176-3
24.
24. JJ. Monaghan, Annu. Rev. Astron. Astrophys 543 (1992).
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
25.
25. M. Desbrun, M. P. Gascuel, Proceedings of Eurographics Workshop on Animation and Simulation 61 (1996).
26.
26. GR. Liu, MB. Liu, World Scientific,(2003).
27.
27. WG. Hoover, Physica A 260, 244 (1998).
http://dx.doi.org/10.1016/S0378-4371(98)00357-4
28.
28. A. Colagrossi, M. Landrini, J. Comput. Phys. 191, 448 (2003).
http://dx.doi.org/10.1016/S0021-9991(03)00324-3
29.
29. AM. Tartakovsky, PA. Meakin, J. Comput. Phys. 207, 610 (2005).
http://dx.doi.org/10.1016/j.jcp.2005.02.001
30.
30. JJ. Monaghan, J. Comput. Phys. 60, 253 (1985).
http://dx.doi.org/10.1016/0021-9991(85)90006-3
31.
31. Y. J. Choo, B. S. Kang, Exp. in Fluids 34, 655 (2003).
http://dx.doi.org/10.1007/s00348-002-0554-0
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624554
Loading
/content/aip/journal/adva/1/3/10.1063/1.3624554
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3624554
2011-07-29
2016-12-06

Abstract

We applied the Smoothed Particle Hydrodynamics method to simulate for first time in the three-dimensional space the hydrodynamic off-center collisions of unequal-size liquiddrops in a vacuum environment. The Weber number for several conditions of the droplets dynamics is determined. Also the velocity vector fields inside the drops are shown in the collision process. The evolution of the kinetic and internal energy is shown for the permanent coalescence case. The resulting drops tend to deform, and depending of the Weber number two possible outcomes for the collision of droplets arise: either permanent coalescence or flocculation. In the permanent coalescence of the drops a fragmentation case is modeled, yielding the formation of little satellite droplets.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3624554.html;jsessionid=bEtBoh7o_16Y4lZrvMAFukOx.x-aip-live-02?itemId=/content/aip/journal/adva/1/3/10.1063/1.3624554&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3624554&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3624554'
Right1,Right2,Right3,