1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3624562
1.
1. J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.844
2.
2. J. C. Slater, Adv. Quantum Chem. 6, 1 (1972).
http://dx.doi.org/10.1016/S0065-3276(08)60541-9
3.
3. J. C. Slater and J. H. Wood, Int. J. Quant. Chem. Suppl. 4, 3 (1971).
4.
4. J. F. Janak, Phys. Rev. B 18, 7165 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.7165
5.
5. Y. Imamura, R. Kobayashi, and H. Nakai, J. Chem. Phys. 134, 124113 (2011).
http://dx.doi.org/10.1063/1.3569030
6.
6. D. H. E. abd E. R. Johnson, X. Hu, and W. Yang, J. Phys. Chem. A 115, 76 (2011).
http://dx.doi.org/10.1021/jp109280y
7.
7. S. Sanna, W. G. Schmidt, T. Frauenheim, and U. Gerstmann, Phys. Rev. B 80, 104120 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.104120
8.
8. J.-W. Song, M. A. Watson, and K. Hirao, J. Chem. Phys. 131, 144108 (2009).
http://dx.doi.org/10.1063/1.3243819
9.
9. S. Sanna, T. Frauenheim, and U. Gerstmann, Phys. Rev. B 78, 085201 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085201
10.
10. T. Körzdörfer and S. Kümmel, Phys. Rev. B 82, 155206 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155206
11.
11. E. Kraisler, G. Makov, and I. Kelson, Phys. Rev. A 82, 042516 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.042516
12.
12. E. R. Johnson, W. Yang, and E. R. Davidson, J. Chem. Phys. 133, 164107 (2010).
http://dx.doi.org/10.1063/1.3497190
13.
13. F. Gallino, G. Pacchioni, and C. D. Valentin, J. Chem. Phys. 133, 144512 (2010).
http://dx.doi.org/10.1063/1.3491271
14.
14. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
15.
15. C. Göransson, W. Olovsson, and I. A. Abrikosov, Phys. Rev. B 72, 134203 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.134203
16.
16. J. R. Leite and L. G. Ferreira, Phys. Rev. A 3, 1224 (1971).
http://dx.doi.org/10.1103/PhysRevA.3.1224
17.
17. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
18.
18. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
19.
19. D. A. Liberman, Phys. Rev. B 62, 6851 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.6851
20.
20. T. Körzdörfer, J. Chem. Phys. 134, 094111 (2011).
http://dx.doi.org/10.1063/1.3556979
21.
21. I. Dabo, A. Ferretti, N. Poilvert, Y. Li, N. Marzari, and M. Cococcioni, Phys. Rev. B 82, 115121 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115121
22.
22. S. B. Trickey, Phys. Rev. Letters 56, 881 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.881
23.
23. C. D. Pemmaraju, T. Archer, D. Sánchez-Portal, and S. Sanvito, Phys. Rev. B 75, 045101 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045101
24.
24. J. M. García-Lastra, P. L. Cook, F. J. Himpsel, and A. Rubio, J. Chem. Phys. 133, 151103 (2010).
http://dx.doi.org/10.1063/1.3497188
25.
25. R. R. Zope, T. Baruah, S. L. Richardson, M. R. Pederson, and B. I. Dunlap, J. Chem. Phys. 133, 034301 (2010).
http://dx.doi.org/10.1063/1.3459056
26.
26.In the table below the Electrostatic self-energy is the first term of Eq. (5), Self-energy is calculated according to Eq. (6). Entries are in Rydbergs.
27.
27.We rewrite Eq. (3) as where H is the part of the Eq. operating on nα. Then, as ψα is a normalized eigenfuntion of H, the derivative with respect to any of its parameters is null.
28.
28. T. Körzdörfer, S. Kümmel, N. Marom, and L. Kronik, Phys. Rev. B 79, 201205R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.201205
29.
29. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
30.
30. S. Froyen, N. Troullier, J. L. Martins, and A. Garcia, Code ATOM inside the SIESTA package (2006).
31.
31. cccbdb.nist.gov, Calculated data D.6, Ionization Energies.
32.
32. W. Klopper, R. A. Bachorz, D. P. Tew, and C. Hättig, Phys. Rev. A 81, 022503 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.022503
33.
33.The reader should not confuse localized quasi-stationary states in crystals, such as the holes we are talking about, with localized basis functions as the Wannier functions.
34.
34. J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1884
35.
35. L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1888
36.
36. N. Helbig, N. N. Lathiotakis, and E. K. U. Gross, Phys. Rev. A 79, 022504 (2009).
http://dx.doi.org/10.1103/PhysRevA.79.022504
37.
37. L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B 78, 125116 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.125116
38.
38. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
39.
39. G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
40.
40. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
41.
41. P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. 59, 399 (1990), see www.wien2k.at.
http://dx.doi.org/10.1016/0010-4655(90)90187-6
42.
42. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.601
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624562
Loading
/content/aip/journal/adva/1/3/10.1063/1.3624562
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3624562
2011-07-29
2014-12-27

Abstract

The very old and successful density-functional technique of half-occupation is revisited [J. C. Slater, Adv. Quant. Chem. 6, 1 (1972)]. We use it together with the modern exchange-correlation approximations to calculate atomic ionization energies and band gaps in semiconductors [L. G. Ferreira et al., Phys. Rev. B 78, 125116 (2008)]. Here we enlarge the results of the previous paper, add to its understandability, and show when the technique might fail. Even in this latter circumstance, the calculated band gaps are far better than those of simple LDA or GGA. As before, the difference between the Kohn-Sham ground state one-particle eigenvalues and the half-occupation eigenvalues is simply interpreted as the self-energy (not self-interaction) of the particle excitation. In both cases, that of atomic ionization energies and semiconductorband gaps, the technique is proven to be very worthy, because not only the results can be very precise but the calculations are fast and very simple.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3624562.html;jsessionid=4t5qbvk9qrvk3.x-aip-live-02?itemId=/content/aip/journal/adva/1/3/10.1063/1.3624562&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624562
10.1063/1.3624562
SEARCH_EXPAND_ITEM