1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Magnetic, dielectric and photo-absorption study of a ferromagnetic semiconductor α-Fe1.4Ga0.6O3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3624734
1.
1.M. Fiebig, and N. A. Spaldin, Eur. Phys. J. B 71, 293 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00266-4
2.
2.T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
3.
3.M. Ivill, S. J. Pearton, Y. W. Heo, J. Kelly, A. F. Hebard, D. P. Norton, J. Appl. Phys. 101, 123909 (2007).
http://dx.doi.org/10.1063/1.2739302
4.
4.Y. C. Yang, C. Song, F. Zeng, F. Pan, Y. N. Xie, and T. Liu, Appl. Phys. Lett. 90, 242903 (2007).
http://dx.doi.org/10.1063/1.2748081
5.
5.K. F. Wang, J.-M. Liu, and Z. F. Ren, Adv. Phys. 58, 321 (2009).
http://dx.doi.org/10.1080/00018730902920554
6.
6.K. Kaneko, T. Nomura, I. Kakeya, and S. Fujita, Appl. Phys. Exp. 2, 075501 (2009).
http://dx.doi.org/10.1143/APEX.2.075501
7.
7.P. Majewski, and T. Benjamin, Critical Reviews in Solid State and Materials Sciences 32, 203 (2007).
http://dx.doi.org/10.1080/10408430701776680
8.
8.PA Cox in: Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties (Clarendon, Oxford, 1992).
9.
9.J. Velev, A. Bandyopadhyay, W. H. Butler, and S. Sarker, Phys. Rev. B 71, 205208 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205208
10.
10.E. Thimsen, S. Biswas, C. S. Lo, and P. Biswas, J. Phy. Chem. C 113, 2014 (2009).
http://dx.doi.org/10.1021/jp807579h
11.
11.W. Kleemann et al. IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control 57, 2228 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1682
12.
12.P. Robinson, R. J. Harrison, S. A. McEnroe, and R. B. Hargraves, Nature 418, 517 (2002).
http://dx.doi.org/10.1038/nature00942
13.
13.T. Droubay, K. M. Rosso, S. M. Heald, D. E. McCready, C. M. Wang, and S. A. Chambers, Phys. Rev. B 75, 104412 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.104412
14.
14.R. Pentcheva, and H. S. Nabi, Phys. Rev. B 77, 172405 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.172405
15.
15.C. Frandsen, B. P. Burton, H. K. Rasmussen, S. A. McEnroe, and S. Mørup, Phys. Rev. B 81, 224423 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.224423
16.
16.S. A. McEnroe, B. C. Stiglitz, R. J. Harrison, P. Robinson, K. Fabian, and C. McCammon, Nature Nanotech. 2, 631 (2007).
http://dx.doi.org/10.1038/nnano.2007.292
17.
17.M. N. Huda, A. Walsh, Y. Yan, Su-H. Wei, and M. M. Al-Jassim, J. Appl. Phys. 107, 123712 (2010).
http://dx.doi.org/10.1063/1.3432736
18.
18.J. Dou, L. Navarrete, P. Kale, P. Padmini, R. K. Pandey, H. Guo, A. Gupta, and R. Schad, J. Appl. Phys. 101, 053908 (2007).
http://dx.doi.org/10.1063/1.2450678
19.
19.H. Hojo, K. Fujita, T. Mizoguchi, K. Hirao, I. Tanaka, K. Tanaka, and Y. Ikuhara, Phys. Rev. B 80, 075414 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075414
20.
20.Y. Takada, M. Nakanishi, T. Fujii, J. Takada, and Y. Muraoka, J.Appl. Phys. 104, 033713 (2008).
http://dx.doi.org/10.1063/1.2966298
21.
21.W. Kim, S. J. Moon, C. S. Kim, Hyper. Interact. 185, 167 (2008).
http://dx.doi.org/10.1007/s10751-008-9822-6
22.
22.C. Ederer, and C. J. Fennie, J.Phys.: Condens. Matter 20, 434219 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434219
23.
23.B. F. Levine, C. H. Nowlin, and R. V. Jones, Phys. Rev. 174, 571 (1968).
http://dx.doi.org/10.1103/PhysRev.174.571
24.
24.J. M. G. Amores, V. S. Escribano, G. Busca, E. F. Lopez, and M. Saidi, J. Mater. Chem. 11, 3234 (2001).
http://dx.doi.org/10.1039/b103523c
25.
25.T. Arima, D. Higashiyama, Y. Kaneko, J. P. He, T. Goto, S. Miyasaka, T. Kimura, K. Oikawa, T. Kamiyama, R. Kumai, Y. Tokura, Phys. Rev. B 70, 064426 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.064426
26.
26.H. Schmid, J. Phys.: Condens. Matter 20, 434201 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434201
27.
27.M. Trassin, N. Viart, G. Versini, S. Barre, G. Pourroy, J. Lee, W. Jo, K. Dumesnil, C. Dufour, and S. Robert, J. Mater. Chem. 19, 8876 (2009).
http://dx.doi.org/10.1039/b913359c
28.
28.A. S. Moskvin, R. V. Pisarev, Fizika Nizkikh Temperatur 36, 613 (2010).
29.
29.Z. H. Sun, B. L. Cheng, S. Dai, L. Z. Cao, Y. L. Zhou, K. J. Jin, Z. H. Chen, and G. Z. Yang, J. Phys. D: Appl. Phys. 39, 2481 (2006).
http://dx.doi.org/10.1088/0022-3727/39/12/001
30.
30.W. Kim, J. H. We, S. J. Kim, and C. S. Kim, J. Appl. Phys. 101, 09M515 (2007).
http://dx.doi.org/10.1063/1.2712819
31.
31.M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 75, 060404 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.060404
32.
32.T Arima, J. Phys.: Condens. Matter 20, 434211 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434211
33.
33.V. B. Naik, R. Mahendiran, J. Appl. Phys. 106, 123910 (2009).
http://dx.doi.org/10.1063/1.3271391
34.
34.R. N. Bhowmik, M. N. Murty and E. S. Srinadhu, PMC Physics B 1, 20 (2008).
http://dx.doi.org/10.1186/1754-0429-1-20
35.
35.R. N. Bhowmik and A. Saravanan, J. Appl. Phys. 107, 053916 (2010).
http://dx.doi.org/10.1063/1.3327433
36.
36.K. Sharma, V. R. Reddy1, D. Kothari, A. Gupta, A. Banerjee, and V. G. Sathe, J. Phys.: Condens. Matter 22, 146005 (2010).
http://dx.doi.org/10.1088/0953-8984/22/14/146005
37.
37.R. N. Bhowmik, Asok Poddar, R. Ranganathan, and Chandan Mazumdar, J. Appl. Phys. 105, 113909 (2009).
http://dx.doi.org/10.1063/1.3138814
38.
38.N. Naresh, R. N. Bhowmik, B. Ghosh, and S. Banerjee, J. Appl. Phys. 109, 093913 (2011).
http://dx.doi.org/10.1063/1.3585663
39.
39.X. Fang, Y. Bando, U. K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, D. Golberg, Critical Reviews in Solid State and Materials Sciences 34, 190 (2009).
http://dx.doi.org/10.1080/10408430903245393
40.
40.K. K. Patankar, V. L. Mathe, R. P. Mahajan, S. A. Patil, R. M. Reddy, K. V. SivaKumar, Materials Chemistry and Physics 72, 23 (2001).
http://dx.doi.org/10.1016/S0254-0584(01)00307-8
41.
41.M. Viviani, M. Bassoli, V. Buscaglia, M. T. Buscaglia 1, and P. Nanni, J. Phys. D: Appl. Phys. 42, 175407 (2009).
http://dx.doi.org/10.1088/0022-3727/42/17/175407
42.
42.E. Subramanian, J.-Ook Baeg, Sa. Mi Lee, S.-Jin Moon, Ki-jeong Kong, Int. J. hydrogen energy 34, 8485 (2009).
http://dx.doi.org/10.1016/j.ijhydene.2009.07.120
43.
43.D. M. Sherman, T. D. Waite, American Mineralogist 70, 1262 (1985).
44.
44.L. A. Marusak, R. Messier, and W. B. White, J. Phys. Chem. Solids. 41, 981 (1980).
http://dx.doi.org/10.1016/0022-3697(80)90105-5
45.
45.G. Wang, X. Gou, J. Horvat, and J. Park, J. Phys. Chem. C 112, 15220 (2008).
http://dx.doi.org/10.1021/jp803869e
46.
46.L. Fang, K. Zhou, F. Wu, Q. L. Huang, X. F. Yang, and C. Y. Kong, J. Supercond. Nov. Magn. 23, 885 (2010).
http://dx.doi.org/10.1007/s10948-010-0705-0
47.
47.B. Gilbert, C. Frandsen, E. R. Maxey, and D. M. Sherman, Phys. Rev. B 79, 035108 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035108
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624734
Loading
/content/aip/journal/adva/1/3/10.1063/1.3624734
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3624734
2011-08-01
2014-09-30

Abstract

We report the synthesis of α-Fe1.4Ga0.6O3 compound and present its structural phase stability and interesting magnetic, dielectric and photo-absorption properties. In our work Ga doped α-Fe2O3 samples are well stabilized in α phase (rhombohedral crystal structure with space group R3C). Properties of the present composition of Ga doped α-Fe2O3 system are remarkably advanced in comparison with recently most studied FeGaO3 composition. At room temperature the samples are typical soft ferromagnet, as well as direct band gapsemiconductor. Dielectric study showed low dielectric loss in the samples with large enhancement of ac conductivity at higher frequencies. Optical absorption in the visible range has been enhanced by 4 to 5%. This composition has exhibited large scope of tailoring room temperatureferromagnetic moment and optical band gap by varying grain size and non-ambient (vacuum) heat treatment of the as prepared samples by mechanical alloying.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3624734.html;jsessionid=4gfn4p5nk5c00.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3624734&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetic, dielectric and photo-absorption study of a ferromagnetic semiconductor α-Fe1.4Ga0.6O3
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624734
10.1063/1.3624734
SEARCH_EXPAND_ITEM