1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Melting of iron at the Earth's core conditions by molecular dynamics simulation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3624736
1.
1. D. Alfè, Phys. Rev. B 79, 060101(2009).
http://dx.doi.org/10.1103/PhysRevB.79.060101
2.
2. J. M. Brown and R. G. McQueen, J. Geophys. Res. 91, 7485(1986);
http://dx.doi.org/10.1029/JB091iB07p07485
2.J. M. Brown and R. G. McQueen, Geophys. Res. Lett. 7, 533(1980).
http://dx.doi.org/10.1029/GL007i007p00533
3.
3. S. K. Saxena, G. Shen, P. Lazor, Science 264, 405(1994).
http://dx.doi.org/10.1126/science.264.5157.405
4.
4. Q. Williams, R. Jeanloz, J. Bass, B. Svendsen, T. J. Ahrens, Science 236, 181(1987).
http://dx.doi.org/10.1126/science.236.4798.181
5.
5. Y. Z. Ma, M. Somayazulu, G. Shen, Ho-kwang. Mao, J. F. Shu, and R. J. Hemley, Phys. Earth. Planet. Inter. 143-144, 455(2004).
http://dx.doi.org/10.1016/j.pepi.2003.06.005
6.
6. C. S. Yoo, N. C. Holmes, M. Ross, D. J. Webb, and C. Pike, Phys. Rev. Lett. 70, 3931(1993)
http://dx.doi.org/10.1103/PhysRevLett.70.3931
7.
7. O. L. Anderson, Phys. Earth. Planet. Inter. 109, 179(1998).
http://dx.doi.org/10.1016/S0031-9201(98)00123-X
8.
8. A. Laio, S. Bernard, G. L. Chiarotti, S. Scandolo, E. Tosatti, Science 287, 1027(2000).
http://dx.doi.org/10.1126/science.287.5455.1027
9.
9. J. H. Nguyen, N. C. Holmes, Nature(London) 427, 339(2004).
http://dx.doi.org/10.1038/nature02248
10.
10. D. Alfè, M. J. Gillan, and G. D. Price, Nature(London) 401, 462(1999);
http://dx.doi.org/10.1038/46758
10.E. Sola, and D. Alfè, Phys. Rev. Lett. 103, 078501(2009);
http://dx.doi.org/10.1103/PhysRevLett.103.078501
10.D. Alfè, G. D. Price, and M. J. Gillan, Phys. Rev. B 65, 165118(2002);
http://dx.doi.org/10.1103/PhysRevB.65.165118
11.
11. R. S. Wang, H. Y. Hou, X. D. Ni, and G. L. Chen, J. Univ. Sci. Technol. Beijing 15, 425(2008).
12.
12. S. M. Foiles, and J. B. Adams, Phys. Rev. B 40, 5909(1989).
http://dx.doi.org/10.1103/PhysRevB.40.5909
13.
13. R. Boehler, N. von Bargen, and A. Chopelas, J. Geophys. Res. 95(B13), 21731(1990).
http://dx.doi.org/10.1029/JB095iB13p21731
14.
14. R. Boehler, D. Santamaria-Pérez, D. Errandonea, and M. Mezouar, J. Phys.: Conf. Ser. 121, 022018(2008).
http://dx.doi.org/10.1088/1742-6596/121/2/022018
15.
15. G. Y. Shen, Ho-kwang. Mao, R. J. Hemley, T. S. Duffy, M. L. Rivers, Geophys. Res. Lett. 25, 373(1998).
http://dx.doi.org/10.1029/97GL03776
16.
16. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D. M. Herlach, Phys. Rev. Lett. 89, 075507(2002).
http://dx.doi.org/10.1103/PhysRevLett.89.075507
17.
17. S. Plimpton, J. Comput. Phys. 117, 1(1995).
http://dx.doi.org/10.1006/jcph.1995.1039
18.
18. G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han and A. V. Barashev, J. Phys.: Condens. Matter 16, S2629(2004); http://www.ctcms.nist.gov/potentials/.
http://dx.doi.org/10.1088/0953-8984/16/27/003
19.
19. L. Verlet, Phys. Rev. 159, 98(1967).
http://dx.doi.org/10.1103/PhysRev.159.98
20.
20. F. H. Stillinger, and T. A. Weber, Phys. Rev. A 25, 978(1982).
http://dx.doi.org/10.1103/PhysRevA.25.978
21.
21. R. D. van der Hilst, M. V. de Hoop, P. Wang, S. -H. Shim, P. Ma, and L. Tenorio, Science 315, 1813(2007).
http://dx.doi.org/10.1126/science.1137867
22.
22. J. D. Honeycutt, and H. C. Andersen, J. Phys. Chem. 91, 4950 (1987).
http://dx.doi.org/10.1021/j100303a014
23.
23. N. Jakse, and A. Pasturel, Phys. Rev. Lett. 91,195501(2003).
http://dx.doi.org/10.1103/PhysRevLett.91.195501
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624736
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) Comparison of the EOSs from the present MD simulations with that of some experimental data.

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) The temperature and pressure for a simulation of solid and liquid iron in coexistence. The solid boundary regions of system completely melt after about 15 ps.

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) The temperature and pressure for a simulation of solid and liquid iron in coexistence. The system still remains the solid-liquid coexistence after 150 ps.

Image of FIG. 4.

Click to view

FIG. 4.

(Color online) Snapshot of a MD simulation showing the solid and liquid iron in coexistence.

Image of FIG. 5.

Click to view

FIG. 5.

(Color online) Comparison of the melting points of iron from the present MD simulations with previous experimental and theoretical results. For clarity, uncertainties of the melting temperatures in previous some experiments and simulations, often hundreds of degrees, aren't shown here.

Image of FIG. 6.

Click to view

FIG. 6.

(Color online) The statistics of the pairs distribution in the molten iron with pressure.

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3624736
2011-08-01
2014-04-19

Abstract

By large scale molecular dynamics simulations of solid-liquid coexistence, we have investigated the melting of iron under pressures from 0 to 364 GPa. The temperatures of liquid and solid regions, and the pressure of the system are calculated to estimate the melting point of iron. We obtain the melting temperature of iron is about 6700±200K under the inner-outer core boundary, which is in good agreement with the result of Alfè et al. By the pair analysis technique, the microstructure of liquidiron under higher pressures is obviously different from that of lower pressures and ambient condition, indicating that the pressure-induced liquid-liquid phase transition may take place in iron melts.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3624736.html;jsessionid=1ocnc7ni32jyo.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3624736&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Melting of iron at the Earth's core conditions by molecular dynamics simulation
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624736
10.1063/1.3624736
SEARCH_EXPAND_ITEM