Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3624838
1.
1. W. D. Li, F. Ding, J. Hu, and S. Y. Chou, Opt. Exp., 19, 3925 (2011).
http://dx.doi.org/10.1364/OE.19.003925
2.
2. M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech and M. Wuttig, J. App. Phys, 101, 074903 (2007).
http://dx.doi.org/10.1063/1.2715554
3.
3. A. V. Shah, M. Vanecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fay, E. Vallat-Sauvain, V. Terrazzoni-Daudrix, J. Bailat, J. of Non-Crystalline Solids 338-340, 639 (2004).
http://dx.doi.org/10.1016/j.jnoncrysol.2004.03.074
4.
4. L. Hu and G. Chen, Nano. Lett., 3249 (2007).
http://dx.doi.org/10.1021/nl071018b
5.
5. S. B. Rim, S. Zhao, S. R. Scully M. D. McGehee, and P. Peumans, Appl. Phys. Lett., 91, 243501 (2007).
http://dx.doi.org/10.1063/1.2789677
6.
6. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, Appl. Phys. Lett., 73, 1991 (1998).
http://dx.doi.org/10.1063/1.122345
7.
7. K. L. Chopra, P. D. Paulson, and V. Dutta, Prog. Photovolt: Res. Appl. 12, 69 (2004).
http://dx.doi.org/10.1002/pip.541
8.
8. J. Muller, B. Rech, J. Springer, and M. Vanecek, Solar Energy 77, 917 (2004).
http://dx.doi.org/10.1016/j.solener.2004.03.015
9.
9. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg and D. W. Prather, Opt. Exp., 16, 15238 (2008).
http://dx.doi.org/10.1364/OE.16.015238
10.
10. L. Zeng, Y. Yi, C. Hong, J. Liu, X. Duan and L. Kimerling, Appl. Phys. Lett. 89, 111111 (2006).
http://dx.doi.org/10.1063/1.2349845
11.
11. D. Zhou and R. Biswas, J. Appl. Phys., 103, 093102 (2008).
http://dx.doi.org/10.1063/1.2908212
12.
12. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita and M. Yamaguchi, Prog. Photovolt. Res. Appl. 15, 415 (2007).
http://dx.doi.org/10.1002/pip.754
13.
13. J. Springer, B. Rech, W. Reetz, J. Muller, and M. Vanecek, Solar Energy Materials & Solar Cells 85, 1 (2005).
14.
14. J. R. Nagel and M. A. Scarpull, Opt. Exp., 18, A139 (2010).
http://dx.doi.org/10.1364/OE.18.00A139
15.
15. A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, J. Appl. Phys., 88, 148 (2000).
http://dx.doi.org/10.1063/1.373635
16.
16. S. Fahr, C. Rockstuhl, and F. Lederer, Appl. Phys. Lett., 92, 171114 (2008).
http://dx.doi.org/10.1063/1.2919094
17.
17. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett. 93, 221105 (2008).
http://dx.doi.org/10.1063/1.3039787
18.
18. F. Tsai, J. Wang, J. Huang, Y. Kiang, and C. C. Yang, Opt. Exp., 18, A207 (2010).
http://dx.doi.org/10.1364/OE.18.00A207
19.
19. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
http://dx.doi.org/10.1063/1.2734885
20.
20. K. R. Catchpole and A. Polman, Appl. Phys. Lett., 93, 191113 (2008).
http://dx.doi.org/10.1063/1.3021072
21.
21. F. J. Beck, A. Polman, and K. R. Catchpole, J. Appl. Phys. 105, 114310 (2009).
http://dx.doi.org/10.1063/1.3140609
22.
22. Di Gao, Rongrui He, Carlo Carraro, Roger T. Howe, Peidong Yang, and Roya Maboudian, J. Am. Chem. Soc. 127, 45744575 (2005).
http://dx.doi.org/10.1021/ja043645y
23.
23. M. K. Sunkara, S. Sharma, and R. Miranda, Appl. Phys. Lett., 79, 15461548 (2001).
http://dx.doi.org/10.1063/1.1401089
24.
24. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
25.
25. I. Lombardi, Chem. Mater. 18, 988991 (2006).
http://dx.doi.org/10.1021/cm052435x
26.
26. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue, T. Takahagi, Solid-State Electronics. 43, 1143 (1999).
http://dx.doi.org/10.1016/S0038-1101(99)00037-4
27.
27. K. Peng, Appl. Phys. Lett. 90, 163123 (2007).
http://dx.doi.org/10.1063/1.2724897
28.
28. K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, Adv. Mater. 14 (16), 1164 (2002).
http://dx.doi.org/10.1002/1521-4095(20020816)14:16<1164::AID-ADMA1164>3.0.CO;2-E
29.
29. L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapolc, Journal of Nanophotonics, 1, 013552 (2007).
http://dx.doi.org/10.1117/1.2768999
30.
30. S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, M. Husain, Solar Energy Materials and Solar Cells, 94, 1506 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.02.033
31.
31. Y. L. Chiew and K. Y. Cheong, Physica E: Low-Dimensional Systems and Nanostructures, 42, 1338 (2010).
http://dx.doi.org/10.1016/j.physe.2009.11.021
32.
32. F. M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gösele, D. D. Ma, and S.-T. Lee, Journal of The Electrochemical Society, 151, G472 (2004).
http://dx.doi.org/10.1149/1.1759365
33.
33. E. Garnett and P. Yang, Nano. Lett. 10, 10821087 (2010).
http://dx.doi.org/10.1021/nl100161z
34.
34. Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello and S. T. Lee. Journal of Crystal Growth, 197, 136 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)00953-1
35.
35. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee and S. T. Lee, Appl. Phys. Lett. 78 (21), 3304 (2001).
http://dx.doi.org/10.1063/1.1371966
36.
36. Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee and Z. L. Wang, J. Phys. Chem. B, 105, 2507 (2001).
http://dx.doi.org/10.1021/jp004253q
37.
37. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, Phys. Rev. B. 58, R16024 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R16024
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624838
Loading
/content/aip/journal/adva/1/3/10.1063/1.3624838
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3624838
2011-08-01
2016-12-10

Abstract

Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell siliconnanowires with both broadband (from 400nm to 900nm) and wide angle (from normal incidence to 60º) antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si) nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3624838.html;jsessionid=Acq5ju6_OrmLVtY4874Fy9wT.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3624838&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3624838&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3624838'
Right1,Right2,Right3,