1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
High-density G-centers, light-emitting point defects in silicon crystal
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3624905
1.
1. U. Menczigar, G. Abstreiter, J. Olajos, H. Grimmeiss, H. Kibbel, H. Presting, and E. Kasper, Phys. Rev. B 47, 4099 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.4099
2.
2. M. Jo, K. Ishida, N. Yasuhara, Y. Sugawara, K. Kawamoto, and S. Fukatsu, Appl. Phys. Lett. 86, 103509 (2005).
http://dx.doi.org/10.1063/1.1882757
3.
3. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, Nature Photonics 1, 232 (2007).
http://dx.doi.org/10.1038/nphoton.2007.29
4.
4. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, Appl. Phys. Lett. 43, 943 (1983).
http://dx.doi.org/10.1063/1.94190
5.
5. S. G. Cloutier, P. A. Kossyrev, and J. Xu, Nature Mater. 4, 887 (2005).
http://dx.doi.org/10.1038/nmat1530
6.
6. Y. Yasutake, J. Igarashi, N. Tana-ami, and S. Fukatsu, Opt. Express 17, 16739 (2009).
http://dx.doi.org/10.1364/OE.17.016739
7.
7. J. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J. S. Williams, M. J. Aziz, and F. Capasso, Opt. Express 15, 6727 (2007).
http://dx.doi.org/10.1364/OE.15.006727
8.
8. T. Nozaki, Y. Yatsurugi, and N. Akiyama, J. Electrochem. Soc. 117, 1566 (1970).
http://dx.doi.org/10.1149/1.2407385
9.
9. E. Rotem, J. M. Shainline, and J. M. Xu, Appl. Phys. Lett. 91, 051127 (2007).
http://dx.doi.org/10.1063/1.2766843
10.
10. E. Rotem, J. M. Shainline, and J. M. Xu, Opt. Express 15, 14099 (2007).
http://dx.doi.org/10.1364/OE.15.014099
11.
11. K. Murata, Y. Yasutake, K. Nittoh, K. Sakamoto, S. Fukatsu, and K. Miki, Appl. Phys. Express 3, 061302 (2010).
http://dx.doi.org/10.1143/APEX.3.061302
12.
12. K. Miki, K. Sakamoto, and T. Sakamoto, Surf. Sci. 406, 312 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00131-9
13.
13. J. H. Song and M. J. Sailor, Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature 21, 69 (1999).
14.
14. R. F. Scholz, P. Werner, U. Gosele, and T. Y. Tan, Appl. Phys. Lett. 74, 392 (1999).
http://dx.doi.org/10.1063/1.123081
15.
15. G. Davies, Semiconductor Science and Technology 4, 200 (1989).
http://dx.doi.org/10.1088/0268-1242/4/3/010
16.
16. R. C. Jaeger, Introduction to Microelectronic Fabrication: Volume 5 of Modular Series on Solid State Devices (2nd Edition) (Modular Series on Solid State Deviced, Vol 5), (Prentice Hall, New Jersey, 2001).
17.
17. A. Ogane, K. Hirata, K. Horiuchi, Y. Nishihara, Y. Takahashi, A. Kitiyanan, and T. Fuyuki, Jpn. J. Appl. Phys. 48, 071201 (2009).
http://dx.doi.org/10.1143/JJAP.48.071201
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624905
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(Color online) (a) Schematic illustration of laser doping process of creating carbon-bistable point defects (G-center) into silicon crystal. The details of our laser annealer were previously reported.11 Before annealing, the silicon surface was functionalized with HMDS as a carbon dopant source, which is the main component of the G-center. (b) PL spectra of the sample (i) with two control samples after laser annealing. Before laser annealing, the two control samples were terminated with hydrogen (ii) and chemically oxidized (iii). Si FE(TO) denotes free exciton recombination in Si. G denotes luminescence, at 969 meV with a line width of 2 meV, from the G-center .

Image of FIG. 2.

Click to view

FIG. 2.

(Color online) (a) PL intensity from the G-center as a function of two parameters of laser power and laser scanning speed for HMDS-functionalized Si samples annealed with our laser system, and (b) SIMS profile of carbon atoms in the annealed sample with one condition (P = 9.4W, v = 900 m/min, fluence = 6.3 J/cm2).

Image of FIG. 3.

Click to view

FIG. 3.

(Color online) Electroluminescence spectrum from the G-center doped in Si, taken at a constant current of 50 mA. The inset shows the measurement setup. G denotes luminescence, at 969 meV with a line width of 5 meV, from the G-center in a broad luminescence band.

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3624905
2011-08-02
2014-04-19

Abstract

We propose a new method of creating light-emitting point defects, or G-centers, by modifying a siliconsurface with hexamethyldisilazane followed by laser annealing of the surface region. This laser annealing process has two advantages: creation of highly dense G-centers by incorporating carbon atoms into the silicon during heating; freezing in the created G-centers during rapid cooling. The method provides a surface region of up to 200 nm with highly dense carbon atoms of up to 4 × 1019 cm−3 to create G-centers, above the solubility limit of carbon atoms in silicon crystal (3 × 1017 cm−3). Photoluminescence measurement reveals that the higher-speed laser annealing produces stronger G-center luminescence. We demonstrate electrically-driven emission from the G-centers in samples made using our new method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3624905.html;jsessionid=sqcfpitkllqo.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3624905&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-density G-centers, light-emitting point defects in silicon crystal
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624905
10.1063/1.3624905
SEARCH_EXPAND_ITEM