Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3624926
1.
1. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B 74, 161306R (2006).
http://dx.doi.org/10.1103/PhysRevB.74.161306
2.
2. E. Tirosh and G. Markovich, Adv. Mater. 19, 2608 (2007).
http://dx.doi.org/10.1002/adma.200602222
3.
3. N. H. Hong, J. Sakai, and V. Brizé, J. Phys.: Condens. Mater. 19, 036219 (2007).
http://dx.doi.org/10.1088/0953-8984/19/3/036219
4.
4. Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, and M. Grundmann, Appl. Phys. Lett. 92, 082508 (2008).
http://dx.doi.org/10.1063/1.2885730
5.
5. M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W. A. Adeagbo, W. Hergert, and A. Ernst, Phys. Rev. B 80, 035331 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.035331
6.
6. S. Banerjee, M. Mandal, N. Gayathri, and M. Sardar, Appl. Phys. Lett. 91, 182501 (2007).
http://dx.doi.org/10.1063/1.2804081
7.
7. B. Panigraphy, M. Aslam, and D. Bahadur, Appl. Phys. Lett. 98, 183109 (2011).
http://dx.doi.org/10.1063/1.3574772
8.
8. J. B. Yi, H. Pan, J. Y. Lin, J. Ding, Y. P. Feng, S. Thongmee, T. Liu, H. Gong, and L. Wang, Adv. Mater. 20, 1170 (2008).
http://dx.doi.org/10.1002/adma.200702387
9.
9. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.–J , Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
10.
10. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
11.
11. X. Zuo, S. Yoon, A. Yang, W. Duan, C. Vittoria, and V. G. Harris, J. Appl. Phys. 105, 07C508 (2009).
12.
12. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe, and P. Jena, Phys. Rev. B 77, 205411 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.205411
13.
13. A. Ishizumi and Y. Kanemitsu, Appl. Phys. Lett. 86, 253106 (2005).
http://dx.doi.org/10.1063/1.1952576
14.
14. A. Jagannatha Reddy, M. K. Kokila, H. nagabhushana, R. P. S. Chakradhar, C. Shivakumara, J. L. Rao, and B. M. Nagabhushana, J. Alloys Compd. 509, 5349 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.02.043
15.
15. Y. F. Mei, G. G. Siu, R. Y. Fu, P. Chu, Z. M. Li, and Z. K. Tang, Appl. Surf. Sci. 252, 2973 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.05.004
16.
16. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).
http://dx.doi.org/10.1063/1.1650041
17.
17. H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, and Y. Cao, Appl. Surf. Sci. 257, 4906 (2011).
http://dx.doi.org/10.1016/j.apsusc.2010.12.144
18.
18. D. Elizabeth Pugel, R. D. Vispute, S. S. Hullavarad, T. Venkatesan, and B. Varughese, Appl. Surf. Sci. 254, 2220 (2008).
http://dx.doi.org/10.1016/j.apsusc.2007.07.206
19.
19. J. J. Dong, X. W. Zhang, J. B. You, P. F. Cai, Z. G. Yin, Q. An, X. B. Ma, P. Jin, Z. G. Wang, and P. Chu, ACS Appl. Mater. Interfaces 2, 1780 (2010).
http://dx.doi.org/10.1021/am100298p
21.
21. R. K. Singhal, S. Kumar, Y. T. Xing, U. P. Deshpande, T. Shripathi, S. N. Dolia, and E. Saitovitch, Mater. Lett. 65, 1485 (2011).
http://dx.doi.org/10.1016/j.matlet.2011.02.048
22.
22. W. Hao, J. Li, H. Xu, J. Wang, and T. Wang, ACS Appl. Mater. Interfaces 2, 2053 (2010).
http://dx.doi.org/10.1021/am100303n
23.
23. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nature Mater. 4, 173 (2005).
http://dx.doi.org/10.1038/nmat1310
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3624926
Loading
/content/aip/journal/adva/1/3/10.1063/1.3624926
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3624926
2011-08-02
2016-09-30

Abstract

Clear room temperature ferromagnetism has been observed in ZnOpowders prepared by microemulsion. The O vacancy (VO) clusters mediated by the VO with one electron (F center) contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism.Annealing in H2 incorporated interstitial H (Hi) in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3624926.html;jsessionid=nJXi99MBtYb0bbf3IhdHlW4d.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3624926&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3624926&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3624926'
Right1,Right2,Right3,