Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Spintronics, edited by T. Dietl, D. D. Awschalom, M. Kaminska, and H. Ohmo, Semiconductors and Semimetals Vol. 82 (Elsevier, New York, 2008).
2. H. Ohno, Science 281, 951 (1998).
3. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Nature 402, 790 (1999).
4. J. M. D. Coey, M. Venkatesh and C. B. Fitzgereald, Nat. Mater. 4, 173 (2005).
5. N. H. Hong, J. Sakai, N. Poirot and A. Ruyter, Appl. Phys. Lett. 86, 242505 (2005).
6. J. He, S. Xu, Y. K. Yoo, Q. Xue, H. C. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, and I. Takeuchi, Appl. Phys. Lett. 86, 052503 (2005).
7. N. H. Hong, J. Sakai, N. T. Huong, N. Poirot and A. Ruyter, Phys. Rev. B 72, 045336 (2005).
8. I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett. 89, 216403 (2002).
9. J. A. Chan, S. Lany and A. Zunger, Phys. Rev. Lett. 103, 016404 (2009).
10. M. Venkatesan, C. B. Fitzgerald, and J. M.D. Coey, Nature (London) 430, 630 (2004).
11. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72, 024450 (2005).
12. M. Venkatesh, C. B. Fitzgerald, J. G. Lunney and J. M. D. Coey, Phys. Rev. Lett. 93, 177206 (2004).
13. M. Pesci, F. Gallino, C. Di Valentin, and G. Pacchioni, J. Phys. Chem. C 114, 1350 (2010).
14. C. Århammar, C. M. Araujo, K. V. Rao, S. Norgren, B. Johansson, and R. Ahuja, Phys. Rev. B 82, 134406 (2010).
15. D. Bang, T. Nozaki, Y. Suzuki1, K. Rhie, T.-S. Kim, A. Fukushima, S. Yuasa, E. Minamitani, H. Nakanishi and H. Kasai, Journal of Physics: Conference Series 200, 052004 (2010).
16. R. Valero, J. R. B. Gomes, D. G. Truhlar, and F. Illas, J. Chem. Phys. 132, 104701 (2010).
17. M. M. Ibrahim, Z. Feng, J. C. Dean and M. S. Seehra, J. Phys.: Condens. Matter. 4, 7127 (1992).
18. G. Liu, S. Ji, L. Yin, G. Fei and C. Ye, J. Phys.: Condens. Matter. 22, 046002 (2010).
19. A. Droghetti and S. Sanvito, Appl. Phys. Lett. 94, 252505 (2009).
20. S. Ho, S. Nobuki, N. Uemura, S. Mori, T. Miyake, K. Suzuki, Y. Mikami, M. Shiiki, and S. Kubo, J. Appl. Phys. 106, 014911 (2009).
21. Y. Fei, Am. Miner. 84, 272 (1999).
22. R. C. Whited, C. J. Flaten and W. C. Walker, Solid State Commun. 13, 1903 (1973).
23. W. H. Butler, X. G. Zhang, T. C. Schulthess and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).
24. J. Mathon and A. Umerski, Phys. Rev. B 63, 220403R (2001).
25. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nature Mater. 3, 862 (2004).
26. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki and K. Ando, Nature Mater. 3, 868 (2004).
27. L. Li, X. Fang and C. Zeng, J. Phys. D: Appl. Phys. 42, 155003 (2009).
28. I. Zutic, J. Fabian and D. S. Sarma, Rev. Mod. Phys. 76, 323 (2004).
29. L. Esaki, P. J. Stiles and S. von Molnar, Phys. Rev. Lett. 19, 852 (1967).
30. F. Wang, Z. Pang, L. Lin, S. Fang, Y. Dai and S. Han, Phys. Rev. B. 80, 144424 (2009).
31. H. Wu, A. Stroppa, S. Sakong, S. Picozzi, M. Scheffler, and P. Kratzer, Phys. Rev. Lett. 105, 267203 (2010).
32. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
33. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
34. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
35. Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
36. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
37. P. Blöchl, O. Jepsen and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).
38. J. D. Cox, D. D. Wagman and V. A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1989.
39. Thomas Bredow and A. R. Gerson, Phys. Rev. B 61, 5194 (2000).
40. D. D. Ariza, C. Sousa, F. Illas, D. Ricci and G. Pacchioni, Phys. Rev. B 68, 054101 (2003).
41. L. N. Kantorovich, J. M. Holender and M. J. Gillan, Surf. Sci. 343, 221 (1995).
42. L. A. Keppers, R. L. Kroes, and E. B. Hensley, Phys. Rev B 1, 4151 (1970).
43. Q. S. Wang and N. A. W. Holzwarth, Phys. Rev. B 41, 3211 (1990).
44. A. Droghetti, C. D. Pemmaraju, and S. Sanvito, Phys. Rev. B 78, 140404R (2008).
45. Li-Jie Shi, A. Droghetti, C. D. Pemmaraju, and S. Sanvito, Phys. Lett. A 374, 1292 (2010).
46. X. Lin, S. Yan, M. Zhao, S. Hu, X. Yao, C. Han, Y. Chen, G. Liu, Y. Dai, and L. Mei, J. Appl. Phys. 107, 033903 (2010).
47. G. Liu, S. Ji, L. Yin, G. Fei and C. Ye, J. Phys.: Condens. Matter 22, 046002 (2010).

Data & Media loading...


Article metrics loading...



The formation of magnetic moment due to the dopants with p-orbital (d-orbital) is named d 0 (d −) magnetism, where the ion without (with) partially filled d states is found to be responsible for the observed magnetic properties. To study the origin of magnetism at a fundamental electronic level in such materials, as a representative case, we theoretically investigate ferromagnetism in MgO doped with transition metal (Mn) and non-metal (C). The generalized gradient approximation based first-principles calculations are used to investigate substitutional doping of metal (Mn) and non-metal (C), both with and without the presence of neighboring oxygen vacancy sites. Furthermore, the case of co-doping of (Mn, C) in MgO system is also investigated. It is observed that the oxygen vacancies do not play a role in tuning the ferromagnetism in presence of Mn dopants, but have a significant influence on total magnetism of the C doped system. In fact, we find that in MgO the d 0 magnetism through C doping is curtailed by pairing of the substitutional dopant with naturally occurring O vacancies. On the other hand, in case of (Mn, C) co-doped MgO the strong hybridization between the C (2p) and the Mn(3d) states suggests that co-doping is a promising approach to enhance the ferromagnetic coupling between the nearest-neighboring dopant and host atoms. Therefore, (Mn,C) co-doped MgO is expected to be a ferromagnetic semiconductor with long ranged ferromagnetism and high Curie temperature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd