Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3625411
1.
1.Spintronics, edited by T. Dietl, D. D. Awschalom, M. Kaminska, and H. Ohmo, Semiconductors and Semimetals Vol. 82 (Elsevier, New York, 2008).
2.
2. H. Ohno, Science 281, 951 (1998).
http://dx.doi.org/10.1126/science.281.5379.951
3.
3. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Nature 402, 790 (1999).
http://dx.doi.org/10.1038/45509
4.
4. J. M. D. Coey, M. Venkatesh and C. B. Fitzgereald, Nat. Mater. 4, 173 (2005).
http://dx.doi.org/10.1038/nmat1310
5.
5. N. H. Hong, J. Sakai, N. Poirot and A. Ruyter, Appl. Phys. Lett. 86, 242505 (2005).
http://dx.doi.org/10.1063/1.1949723
6.
6. J. He, S. Xu, Y. K. Yoo, Q. Xue, H. C. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, and I. Takeuchi, Appl. Phys. Lett. 86, 052503 (2005).
http://dx.doi.org/10.1063/1.1851618
7.
7. N. H. Hong, J. Sakai, N. T. Huong, N. Poirot and A. Ruyter, Phys. Rev. B 72, 045336 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045336
8.
8. I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett. 89, 216403 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.216403
9.
9. J. A. Chan, S. Lany and A. Zunger, Phys. Rev. Lett. 103, 016404 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.016404
10.
10. M. Venkatesan, C. B. Fitzgerald, and J. M.D. Coey, Nature (London) 430, 630 (2004).
http://dx.doi.org/10.1038/430630a
11.
11. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72, 024450 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024450
12.
12. M. Venkatesh, C. B. Fitzgerald, J. G. Lunney and J. M. D. Coey, Phys. Rev. Lett. 93, 177206 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.177206
13.
13. M. Pesci, F. Gallino, C. Di Valentin, and G. Pacchioni, J. Phys. Chem. C 114, 1350 (2010).
http://dx.doi.org/10.1021/jp9097556
14.
14. C. Århammar, C. M. Araujo, K. V. Rao, S. Norgren, B. Johansson, and R. Ahuja, Phys. Rev. B 82, 134406 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134406
15.
15. D. Bang, T. Nozaki, Y. Suzuki1, K. Rhie, T.-S. Kim, A. Fukushima, S. Yuasa, E. Minamitani, H. Nakanishi and H. Kasai, Journal of Physics: Conference Series 200, 052004 (2010).
http://dx.doi.org/10.1088/1742-6596/200/5/052004
16.
16. R. Valero, J. R. B. Gomes, D. G. Truhlar, and F. Illas, J. Chem. Phys. 132, 104701 (2010).
http://dx.doi.org/10.1063/1.3340506
17.
17. M. M. Ibrahim, Z. Feng, J. C. Dean and M. S. Seehra, J. Phys.: Condens. Matter. 4, 7127 (1992).
http://dx.doi.org/10.1088/0953-8984/4/34/012
18.
18. G. Liu, S. Ji, L. Yin, G. Fei and C. Ye, J. Phys.: Condens. Matter. 22, 046002 (2010).
http://dx.doi.org/10.1088/0953-8984/22/4/046002
19.
19. A. Droghetti and S. Sanvito, Appl. Phys. Lett. 94, 252505 (2009).
http://dx.doi.org/10.1063/1.3152781
20.
20. S. Ho, S. Nobuki, N. Uemura, S. Mori, T. Miyake, K. Suzuki, Y. Mikami, M. Shiiki, and S. Kubo, J. Appl. Phys. 106, 014911 (2009).
http://dx.doi.org/10.1063/1.3153969
21.
21. Y. Fei, Am. Miner. 84, 272 (1999).
22.
22. R. C. Whited, C. J. Flaten and W. C. Walker, Solid State Commun. 13, 1903 (1973).
http://dx.doi.org/10.1016/0038-1098(73)90754-0
23.
23. W. H. Butler, X. G. Zhang, T. C. Schulthess and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.054416
24.
24. J. Mathon and A. Umerski, Phys. Rev. B 63, 220403R (2001).
http://dx.doi.org/10.1103/PhysRevB.63.220403
25.
25. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant and S. H. Yang, Nature Mater. 3, 862 (2004).
http://dx.doi.org/10.1038/nmat1256
26.
26. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki and K. Ando, Nature Mater. 3, 868 (2004).
http://dx.doi.org/10.1038/nmat1257
27.
27. L. Li, X. Fang and C. Zeng, J. Phys. D: Appl. Phys. 42, 155003 (2009).
http://dx.doi.org/10.1088/0022-3727/42/15/155003
28.
28. I. Zutic, J. Fabian and D. S. Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
29.
29. L. Esaki, P. J. Stiles and S. von Molnar, Phys. Rev. Lett. 19, 852 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.852
30.
30. F. Wang, Z. Pang, L. Lin, S. Fang, Y. Dai and S. Han, Phys. Rev. B. 80, 144424 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.144424
31.
31. H. Wu, A. Stroppa, S. Sakong, S. Picozzi, M. Scheffler, and P. Kratzer, Phys. Rev. Lett. 105, 267203 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.267203
32.
32. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
33.
33. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
34.
34. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
35.
35. Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.13298
36.
36. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
37.
37. P. Blöchl, O. Jepsen and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.16223
38.
38. J. D. Cox, D. D. Wagman and V. A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1989.
39.
39. Thomas Bredow and A. R. Gerson, Phys. Rev. B 61, 5194 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.5194
40.
40. D. D. Ariza, C. Sousa, F. Illas, D. Ricci and G. Pacchioni, Phys. Rev. B 68, 054101 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.054101
41.
41. L. N. Kantorovich, J. M. Holender and M. J. Gillan, Surf. Sci. 343, 221 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00844-6
42.
42. L. A. Keppers, R. L. Kroes, and E. B. Hensley, Phys. Rev B 1, 4151 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.4151
43.
43. Q. S. Wang and N. A. W. Holzwarth, Phys. Rev. B 41, 3211 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.3211
44.
44. A. Droghetti, C. D. Pemmaraju, and S. Sanvito, Phys. Rev. B 78, 140404R (2008).
http://dx.doi.org/10.1103/PhysRevB.78.140404
45.
45. Li-Jie Shi, A. Droghetti, C. D. Pemmaraju, and S. Sanvito, Phys. Lett. A 374, 1292 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.01.010
46.
46. X. Lin, S. Yan, M. Zhao, S. Hu, X. Yao, C. Han, Y. Chen, G. Liu, Y. Dai, and L. Mei, J. Appl. Phys. 107, 033903 (2010).
http://dx.doi.org/10.1063/1.3289721
47.
47. G. Liu, S. Ji, L. Yin, G. Fei and C. Ye, J. Phys.: Condens. Matter 22, 046002 (2010).
http://dx.doi.org/10.1088/0953-8984/22/4/046002
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3625411
Loading
/content/aip/journal/adva/1/3/10.1063/1.3625411
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3625411
2011-08-02
2016-10-01

Abstract

The formation of magnetic moment due to the dopants with p-orbital (d-orbital) is named d 0 (d −) magnetism, where the ion without (with) partially filled d states is found to be responsible for the observed magnetic properties. To study the origin of magnetism at a fundamental electronic level in such materials, as a representative case, we theoretically investigate ferromagnetism in MgO doped with transition metal (Mn) and non-metal (C). The generalized gradient approximation based first-principles calculations are used to investigate substitutional doping of metal (Mn) and non-metal (C), both with and without the presence of neighboring oxygen vacancy sites. Furthermore, the case of co-doping of (Mn, C) in MgO system is also investigated. It is observed that the oxygen vacancies do not play a role in tuning the ferromagnetism in presence of Mn dopants, but have a significant influence on total magnetism of the C doped system. In fact, we find that in MgO the d 0 magnetism through C doping is curtailed by pairing of the substitutional dopant with naturally occurring O vacancies. On the other hand, in case of (Mn, C) co-doped MgO the strong hybridization between the C (2p) and the Mn(3d) states suggests that co-doping is a promising approach to enhance the ferromagnetic coupling between the nearest-neighboring dopant and host atoms. Therefore, (Mn,C) co-doped MgO is expected to be a ferromagnetic semiconductor with long ranged ferromagnetism and high Curie temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3625411.html;jsessionid=WwaHWBhOIol4ZhptUV8yd9Zs.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3625411&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3625411&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3625411'
Right1,Right2,Right3,