Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3625549
1.
1. M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature London 395, 151 (1998).
http://dx.doi.org/10.1038/25954
2.
2. Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 86, 071104 (2005).
http://dx.doi.org/10.1063/1.1862777
3.
3. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
4.
4. S. Reineke, T. C. Rosenow, B. Lüssem, and K. Leo, Adv. Mater. 22, 3189 (2010).
http://dx.doi.org/10.1002/adma.201000529
5.
5. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
http://dx.doi.org/10.1063/1.124258
6.
6. C. Adachi, M. E. Thompson, and S. R. Forrest, IEEE. J. Sel. Top. Quantum Electron. 8, 372 (2002).
http://dx.doi.org/10.1109/2944.999192
7.
7. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
http://dx.doi.org/10.1063/1.1812378
8.
8. D. F. O’Brien, C. Giebler, R. B. Fletcher, A. J. Cadby, L. C. Palilis, D. G. Lidzey, P. A. Lane, D. D. C. Bradley, and W. Blau, Synth. Met. 116, 379 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00441-0
9.
9. T. F. Guo, S. C. Chang, Y. Yang, R. Kwong, and M. E. Thompson, Org. Electon. 1, 15 (2000).
http://dx.doi.org/10.1016/S1566-1199(00)00003-3
10.
10. C.-L. Lee, K. B. Lee, and J-J. Kim, Appl. Phys. Lett. 77, 2280 (2000).
http://dx.doi.org/10.1063/1.1315629
11.
11. S. Tokito, M. Suzuki, F. Sato, M. Kamachi, and K. Shirane, Org. Electron. 4, 105 (2003).
http://dx.doi.org/10.1016/j.orgel.2003.08.005
12.
12. D. Ma, J. M. Lupton, R. Beavington, P. L. Burn, and I. D. W. Samuel, Adv. Funct. Mater. 12, 507 (2002).
http://dx.doi.org/10.1002/1616-3028(20020805)12:8<507::AID-ADFM507>3.0.CO;2-W
13.
13. J. P. J. Markham, S. –C. Lo, S. W. Magennis, P. L. Burn, I. D. W. Samuel, Appl. Phys. Lett. 80, 645 (2002).
http://dx.doi.org/10.1063/1.1469218
14.
14. T. D. Anthopoulos, J. P. J. Markham, E. B. Namdas, I. D. W. Samuel, S. C. Lo, and P. L. Burn, Appl. Phys. Lett. 82, 4824 (2003).
http://dx.doi.org/10.1063/1.1586999
15.
15. S. Naka, K. Shinno, H. Okada, H. Onnagawa, and K. Miyashita, Jpn. J. Appl. Phys. Part 2 33, 1772, (1994).
http://dx.doi.org/10.1143/JJAP.33.L1772
16.
16. H. Aziz, Z. D. Popovic, N.-X. Hu, A. M. Hor, and G. Xu, Science 283, 1900 (1999).
http://dx.doi.org/10.1126/science.283.5409.1900
17.
17. M. Pfeiffer, S. R. Forrest, K. Leo, and M. E. Thompson, Adv. Mater. 14, 1633 (2002).
http://dx.doi.org/10.1002/1521-4095(20021118)14:22<1633::AID-ADMA1633>3.0.CO;2-#
18.
18. Z. K. Wang, Y. H. Lou, S. Naka, and H. Okada, Appl. Phys. Lett. 97, 203302 (2010).
http://dx.doi.org/10.1063/1.3516159
19.
19. Z. K. Wang, S. Naka, and H. Okada, Jpn. J. Appl. Phys. 50, 01BC06 (2011).
20.
20. D. Ma, C. S. Lee, S. T. Lee, and L. S. Hung, Appl. Phys. Lett. 80, 3641 (2002).
http://dx.doi.org/10.1063/1.1479450
21.
21. X. Zhou, J. He, L. S. Liao, M. Lu, X. M. Ding, X. Y. Hou, X. M. Zhang, X. Q. He, and S. T. Lee, Adv. Mater. 12, 265 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200002)12:4<265::AID-ADMA265>3.0.CO;2-L
22.
22. Z. K. Wang, Y. H. Lou, S. Naka, and H. Okada, Appl. Phys. Lett. 98, 0633022 (2011).
23.
23. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3625549
Loading
/content/aip/journal/adva/1/3/10.1063/1.3625549
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3625549
2011-08-03
2016-09-26

Abstract

A highly simplified single layer solution-processed phosphorescent organic light emitting device (PHOLED) with the maximum η P 11.5 lm/W corresponding to EQE 9.6% has been demonstrated. The solution-processed device is shown having comparable even exceeding device performance to vacuum-processed PHOLED. The simplified device design strategy represents a pathway toward large area, low cost and high efficiency OLEDs in the future. The charge injection and conduction mechanisms in two solution- and vacuum-processed devices are also investigated by evaluating the temperature dependence of current density – voltage characteristics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3625549.html;jsessionid=y1O5xrPohbk3sJ9cxpQDfo-s.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3625549&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3625549&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3625549'
Right1,Right2,Right3,