Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3626532
1.
1. S. N. Mohammad, A. Salvador, and H. Morkoc, Proceedings of the IEEE 83, 1306 (1995).
http://dx.doi.org/10.1109/5.469300
2.
2. D. Yoon, Y.-W. Son and H. Cheong, Phys. Rev. Lett. 106, 155502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.155502
3.
3. V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103, 046801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.046801
4.
4. J. Michel, J.-F. Liu and L. C. Kimerling, Nature Photonics 4, 527 (2010).
http://dx.doi.org/10.1038/nphoton.2010.157
5.
5. W.-H. Xu, D. X. Lu and T.-Y. Zhang, Appl. Phys. Lett. 79, 4112 (2001).
http://dx.doi.org/10.1063/1.1426271
6.
6. R. J. Briggs and A. K. Ramdas, Phys. Rev. B 13, 5518 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5518
7.
7. J.-M. Wagner and F. Bechstedt, Appl. Phys. Lett. 77, 346 (2000).
http://dx.doi.org/10.1063/1.127009
8.
8. J.-M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.115202
9.
9. F. Demangeot, J. Frandon, M. A. Renucci, O. Briot, B. Gil, and R. L. Aulombard, Solid State Commun. 100, 207 (1996).
http://dx.doi.org/10.1016/0038-1098(96)00410-3
10.
10. V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, and O. K. Semchinova, J. Appl. Phys. 82, 5097 (1997).
http://dx.doi.org/10.1063/1.366310
11.
11. L. S. Wang, K. Y. Zang, S. Tripathy and S. J. Chua, Appl. Phys. Lett. 85, 5881 (2004).
http://dx.doi.org/10.1063/1.1832758
12.
12. F. Demangeot, J. Frandon, P. Baules, F. Natali, F. Semond, and J. Massies, Phys. Rev. B 69, 155215 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155215
13.
13. A. Sarua, M. Kuball and J. E. Van Nostrand, Appl. Phys. Lett. 85, 2217 (2004).
http://dx.doi.org/10.1063/1.1793338
14.
14. G. Callsen, J. S. Reparaz, M. R. Wagner, R. Kirste, C. Nenstiel, A. Hoffmann, and M. R. Phillips, Appl. Phys. Lett. 98, 061906 (2011).
http://dx.doi.org/10.1063/1.3554434
15.
15. J.-Y. Lu, Z.-J. Wang, D.-M. Deng, Y. Wang, K. J. Chen, K.-M. Lau and T.-Y. Zhang, J. Appl. Phys. 108, 123520 (2010).
http://dx.doi.org/10.1063/1.3524548
16.
16. H.-Y. Huang, Z.-Y. Li, J.-Y. Lu, Z.-J. Wang, C.-S. Wang, K.-M. Lau, K. J. Chen and T.-Y. Zhang, J. Micromech. Microeng. 19, 095019 (2009).
http://dx.doi.org/10.1088/0960-1317/19/9/095019
17.
17. Shimada K , Sota T and Suzuki K , J. Appl. Phys. 84, 4951 (1998).
http://dx.doi.org/10.1063/1.368739
18.
18. J. R. Gladden, J. H. So, J. D. Maynard, P. W. Saxe and Y. L. Page, Appl. Phys. Lett. 85, 392 (2004).
http://dx.doi.org/10.1063/1.1773924
19.
19. J. J. Wortman, R. A. Evans, J. Appl. Phys. 36, 153 (1965).
http://dx.doi.org/10.1063/1.1713863
20.
20. O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T. D. Moustakas, M. Stutzmann, Sol. State Commun. 97, 365 (1996).
http://dx.doi.org/10.1016/0038-1098(95)00658-3
21.
21. J. W. Goodman, “Introduction to Fourier Optics,” McGRAW-HILL New York 1996.
22.
22. P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. San Miguel, I. Grzegory, and A. Polian, Phys. Rev. B 45, 83 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.83
23.
23. A. R. Goñi, H. Siegle, K. Syassen, C. Thomsen, and J.-M. Wagner, Phys. Rev. B 64, 035205 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.035205
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3626532
Loading
/content/aip/journal/adva/1/3/10.1063/1.3626532
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3626532
2011-08-08
2016-09-28

Abstract

In this work, a biaxial stress modulation method, combining the microfabrication technique, finite element analysis and a weighted averaging process, was developed to study piezospectroscopic behavior of hexagonal GaN films, epitaxially grown by metalorganic chemical vapor deposition on c-sapphire and Si (111) substrates. Adjusting the size of patterned islands, various biaxial stress states could be obtained at the island centers, leading to abundant stress-Raman shift data. With the proposed stress modulation method, the Raman biaxial stress coefficients of and A 1 (LO) phonons of GaN were determined to be 3.43 cm-1/GPa and 2.34 cm-1/GPa, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3626532.html;jsessionid=1SYAgUYVuWbCOyweaLDu_o3s.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3626532&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3626532&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3626532'
Right1,Right2,Right3,