1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Collective plasmon modes in a compositionally asymmetric nanoparticle dimer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3628346
1.
1. F. Y. Chen and R. L. Johnston, “Structural and Spectral Characteristics of the Nanoalloy Ag3Au10,” Appl. Phys. Lett. 93, 153123 (2007).
http://dx.doi.org/10.1063/1.2722702
2.
2. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shevets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science, 328(5982), 11351138 (2010).
http://dx.doi.org/10.1126/science.1187949
3.
3. E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C, 114(9), 39183923 (2010).
http://dx.doi.org/10.1021/jp912096v
4.
4. J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and Mikael Kall, “Plasmonic Properties of Silver Trimers with Trigonal Symmetry Fabricated by Electron-Beam Lithography,” J. Phys. Chem. B, 110(25),1230212310 (2006).
http://dx.doi.org/10.1021/jp0613485
5.
5. D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon Modes of Nanosphere Trimers and Quadrumers,” J. Phys. Chem. B 110(25),1230212310 (2006).
http://dx.doi.org/10.1021/jp0613485
6.
6. Bo Yan, Svetlana V. Boriskina, and Bjrn M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n<7) for Array Applications,” J. Phys. Chem. C, 115, 45784583 (2011).
http://dx.doi.org/10.1021/jp112146d
7.
7. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 31843189 (2010).
http://dx.doi.org/10.1021/nl102108u
8.
8. Z.-J. Yang, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, “Fano resonances in dipole-quadrupoleplasmon coupling nanorod dimers,” Optics Letters, 36,15421544 (2011).
http://dx.doi.org/10.1364/OL.36.001542
9.
9. M. Stockman, S. Faleev, and D. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.167401
10.
10. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124, 1866 (1961).
http://dx.doi.org/10.1103/PhysRev.124.1866
11.
11. T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 23432349 (2009).
http://dx.doi.org/10.1021/nl900786u
12.
12. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. E. M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 9, 14 (2009).
http://dx.doi.org/10.1021/nl801811t
13.
13. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature, 438,17 (2005).
http://dx.doi.org/10.1038/nature04242
14.
14. H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express, 15, 10761083 (2007).
http://dx.doi.org/10.1364/OE.15.001076
15.
15. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors”, Opt. Express, 15, 33333341 (2007).
http://dx.doi.org/10.1364/OE.15.003333
16.
16. N. Fetch, C. Enkrich, and M. Wegner, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express, 15, 501507 (2006).
http://dx.doi.org/10.1364/OE.15.000501
17.
17. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Kall, “Magnetic-field enhancement in gold nanosandwiches,” Opt. Express, 14, 82408246 (2006).
http://dx.doi.org/10.1364/OE.14.008240
18.
18. T. Li, H. Liu, F. M. Wang, Z. G. Dong, and S. N. Zhu, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Optics Express 14, 11155 (2006).
http://dx.doi.org/10.1364/OE.14.011155
19.
19. Y. Jeyaram, S. K. Jha, M. Agio, J. F. Loffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructuresOptics Letters, 35, 16561658 (2010).
http://dx.doi.org/10.1364/OL.35.001656
20.
20. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P. F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. L., 101,197401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.197401
21.
21. E. R. Encina, E. A. Coronado, “On the Far Field Optical Properties of Ag-Au Nanosphere Pairs,” J. Phys. Chem. C, 114, 1627816284 (2010).
http://dx.doi.org/10.1021/jp105522b
22.
22. S. Sheikholeslami, Y. W. Jun, P. K. Jain, A. P. Alivisatos, “Coupling of Optical Resonances in a Compositionally Asymmetric Plasmonic Nanoparticle Dimer,” Nano Letters, 10, 26552660 (2010).
http://dx.doi.org/10.1021/nl101380f
23.
23. O. Pena-Rodriguez, U. Pal, M. Campoy-Quiles, “Enhanced Fano Resonance in Asymmetrical Au:Ag Heterodimers,” J. Phys. Chem. C, 115,64106414 (2011).
http://dx.doi.org/10.1021/jp200495x
24.
24. P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B, 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
25.
25. E. Hao, G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357(2004)
http://dx.doi.org/10.1063/1.1629280
26.
26. R. Ruppin, “Surface modes of two spheres,” Phys. Rev. B, 26, 3440 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.3440
27.
27. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex,” Science, 302, 419422 (2003).
http://dx.doi.org/10.1126/science.1089171
28.
28. P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4, 899903 (2004).
http://dx.doi.org/10.1021/nl049681c
29.
29. P. K. Jain, S. Eustis, M. A. El-Sayed, “Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model,” J. Phys. Chem. B, 110, 1824318253 (2006).
http://dx.doi.org/10.1021/jp063879z
30.
30. A. J. Logsdail, N. J. Cookson, S. L. Horswell, Z. W. Wang, Z. Y. Li and R. L. Johnston, “Theoretical and Experimental Studies of the Optical Properties of Conjoined Gold-Palladium Nanospheres,” J. Phys. Chem. C, 114, 2124721251 (2010).
http://dx.doi.org/10.1021/jp108486a
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3628346
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Scattering spectra for the D=60 nm silver nanoparticle homodimer as a function of the polarization angle with interparticle separations of 3 nm (a). Scattering spectra under longitudinal and transverse polarization with respect to a 60 nm isolated silver nanoparticle (b), and as a function of interparticle separations under a polarizer angle of 0 degrees (c).

Image of FIG. 2.

Click to view

FIG. 2.

Electric near-field profiles and surface charge distributions in a D=60 nm silver nanoparticle homodimer for longitudinal and transverse resonance modes.

Image of FIG. 3.

Click to view

FIG. 3.

Scattering spectra for a heterodimer of a D=60 nm silver and gold nanoparticle heterodimer as a function of the polarization angle with interparticle separations of 3 nm (a). Scattering spectra under longitudinal and transverse polarization with respect to the normalized scattering spectra for a 60 nm isolated silver and gold nanoparticle (b), and as a function of interparticle separations at a polarizer angle of 0 degrees (c).

Image of FIG. 4.

Click to view

FIG. 4.

Electric near-field profiles and surface charge distributions in a D=60 nm sliver and gold nanoparticle heterodimer for longitudinal and transverse resonance modes.

Image of FIG. 5.

Click to view

FIG. 5.

Scattering spectra for a D=60 nm sliver and copper nanoparticle heterodimer as a function of the polarization angle with interparticle separations of 3 nm (a). Scattering spectra under longitudinal and transverse polarization with respect to the normalized scattering spectra for a 60 nm isolated copper nanoparticle (b), and as a function of interparticle separations from 1 nm to 15 nm under a polarizer angle of 0 degrees (c).

Image of FIG. 6.

Click to view

FIG. 6.

Electric near-field profiles and surface charge distributions in a D=60 nm silver and copper nanoparticle heterodimer for longitudinal and transverse resonance modes.

Image of FIG. 7.

Click to view

FIG. 7.

Dipole-dipole interaction model from the first approximation of the hybridization model. A level scheme of two coupled dipoles are shown where the bright mode is red and the dark mode is black (middle) while the surface charge distributions in the dimer under longitudinal coupling (left) and transverse coupling (right) are also shown.

Image of FIG. 8.

Click to view

FIG. 8.

Scattering spectra calculated for varying dimer separation and conductive overlap for the silver-gold heterodimer.

Image of FIG. 9.

Click to view

FIG. 9.

Electric near-field profiles and the surface charge distributions for neighboring silver and gold spheres with their separation gap=-3 nm, 0 nm and 3 nm, the wavelength λ corresponding to selected points of Fig. 8. For the dimer with gap= 3 nm, the near-field maps at λ = 1288 nm is also calculated before the single point contact to check conductive effects, the near-field maps at λ = 410 nm is not plotted here and it is same to the profile in Fig. 4.

Image of FIG. 10.

Click to view

FIG. 10.

Scattering spectra calculated for varying dimer separation and conductive overlap for the silver-copper heterodimer.

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3628346
2011-08-11
2014-04-24

Abstract

The plasmon coupling phenomenon of heterodimers composed of silver,gold and coppernanoparticles of 60 nm in size and spherical in shape were studied theoretically within the scattered field formulation framework. In-phase dipole coupled σ-modes were observed for the Ag-Au and Ag-Cu heterodimers, and an antiphase dipole coupled π-mode was observed for the Ag-Au heterodimer. These observations agree well with the plasmon hybridization theory. However, quadrupole coupled modes dominate the high energy wavelength range from 357-443 nm in the scattering cross section of the D=60 nm Ag-Au and Ag-Cu heterodimer. We demonstrate for the first time that collective plasmon modes in a compositionally asymmetric nanoparticle dimer have to be predicted from the dipole-dipole approximation of plasmon hybridization theory together with the interband transition effect of the constitutive metals and the retardation effect of the nanoparticle size.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3628346.html;jsessionid=3qcbdw86uhww7.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3628346&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Collective plasmon modes in a compositionally asymmetric nanoparticle dimer
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3628346
10.1063/1.3628346
SEARCH_EXPAND_ITEM