Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Y. Chen and R. L. Johnston, “Structural and Spectral Characteristics of the Nanoalloy Ag3Au10,” Appl. Phys. Lett. 93, 153123 (2007).
2. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shevets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science, 328(5982), 11351138 (2010).
3. E. R. Encina and E. A. Coronado, “Plasmon coupling in silver nanosphere pairs,” J. Phys. Chem. C, 114(9), 39183923 (2010).
4. J. Alegret, T. Rindzevicius, T. Pakizeh, Y. Alaverdyan, L. Gunnarsson, and Mikael Kall, “Plasmonic Properties of Silver Trimers with Trigonal Symmetry Fabricated by Electron-Beam Lithography,” J. Phys. Chem. B, 110(25),1230212310 (2006).
5. D. W. Brandl, N. A. Mirin, and P. Nordlander, “Plasmon Modes of Nanosphere Trimers and Quadrumers,” J. Phys. Chem. B 110(25),1230212310 (2006).
6. Bo Yan, Svetlana V. Boriskina, and Bjrn M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n<7) for Array Applications,” J. Phys. Chem. C, 115, 45784583 (2011).
7. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 31843189 (2010).
8. Z.-J. Yang, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, Z.-H. Hao, and Q.-Q. Wang, “Fano resonances in dipole-quadrupoleplasmon coupling nanorod dimers,” Optics Letters, 36,15421544 (2011).
9. M. Stockman, S. Faleev, and D. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001).
10. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124, 1866 (1961).
11. T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 23432349 (2009).
12. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. E. M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 9, 14 (2009).
13. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature, 438,17 (2005).
14. H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express, 15, 10761083 (2007).
15. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors”, Opt. Express, 15, 33333341 (2007).
16. N. Fetch, C. Enkrich, and M. Wegner, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express, 15, 501507 (2006).
17. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Kall, “Magnetic-field enhancement in gold nanosandwiches,” Opt. Express, 14, 82408246 (2006).
18. T. Li, H. Liu, F. M. Wang, Z. G. Dong, and S. N. Zhu, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Optics Express 14, 11155 (2006).
19. Y. Jeyaram, S. K. Jha, M. Agio, J. F. Loffler, and Y. Ekinci, “Magnetic metamaterials in the blue range using aluminum nanostructuresOptics Letters, 35, 16561658 (2010).
20. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P. F. Brevet, “Fano Profiles Induced by Near-Field Coupling in Heterogeneous Dimers of Gold and Silver Nanoparticles,” Phys. Rev. L., 101,197401 (2008).
21. E. R. Encina, E. A. Coronado, “On the Far Field Optical Properties of Ag-Au Nanosphere Pairs,” J. Phys. Chem. C, 114, 1627816284 (2010).
22. S. Sheikholeslami, Y. W. Jun, P. K. Jain, A. P. Alivisatos, “Coupling of Optical Resonances in a Compositionally Asymmetric Plasmonic Nanoparticle Dimer,” Nano Letters, 10, 26552660 (2010).
23. O. Pena-Rodriguez, U. Pal, M. Campoy-Quiles, “Enhanced Fano Resonance in Asymmetrical Au:Ag Heterodimers,” J. Phys. Chem. C, 115,64106414 (2011).
24. P. B. Johnson, R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B, 6, 4370 (1972).
25. E. Hao, G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357(2004)
26. R. Ruppin, “Surface modes of two spheres,” Phys. Rev. B, 26, 3440 (1982).
27. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex,” Science, 302, 419422 (2003).
28. P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett. 4, 899903 (2004).
29. P. K. Jain, S. Eustis, M. A. El-Sayed, “Plasmon Coupling in Nanorod Assemblies: Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model,” J. Phys. Chem. B, 110, 1824318253 (2006).
30. A. J. Logsdail, N. J. Cookson, S. L. Horswell, Z. W. Wang, Z. Y. Li and R. L. Johnston, “Theoretical and Experimental Studies of the Optical Properties of Conjoined Gold-Palladium Nanospheres,” J. Phys. Chem. C, 114, 2124721251 (2010).

Data & Media loading...


Article metrics loading...



The plasmon coupling phenomenon of heterodimers composed of silver,gold and coppernanoparticles of 60 nm in size and spherical in shape were studied theoretically within the scattered field formulation framework. In-phase dipole coupled σ-modes were observed for the Ag-Au and Ag-Cu heterodimers, and an antiphase dipole coupled π-mode was observed for the Ag-Au heterodimer. These observations agree well with the plasmon hybridization theory. However, quadrupole coupled modes dominate the high energy wavelength range from 357-443 nm in the scattering cross section of the D=60 nm Ag-Au and Ag-Cu heterodimer. We demonstrate for the first time that collective plasmon modes in a compositionally asymmetric nanoparticle dimer have to be predicted from the dipole-dipole approximation of plasmon hybridization theory together with the interband transition effect of the constitutive metals and the retardation effect of the nanoparticle size.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd