Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3628347
1.
1. Y. F. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
http://dx.doi.org/10.1063/1.368595
2.
2. D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90104-9
3.
3. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, Phys. Rev. B 60, 2340 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2340
4.
4. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
http://dx.doi.org/10.1126/science.1060367
5.
5. V. A. Fonoberov and A. A. Balandin, J. Phys: Condens. Matter, 17, 1085 (2005).
http://dx.doi.org/10.1088/0953-8984/17/7/003
6.
6. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195207
7.
7. V. A. Fonoberov and A. A. Balandin, J. Nanoelectronics and Optoelectronics 1, 19 (2006).
http://dx.doi.org/10.1166/jno.2006.002
8.
8. V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xu and J. L. Liu, Phys. Rev. B 73, 165317 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.165317
9.
9. V. A. Fonoberov and A. A. Balandin, Phys. Rev. B 70, 195410 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195410
10.
10. V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 85, 5971 (2004).
http://dx.doi.org/10.1063/1.1835992
11.
11. W. Cao, and W. Du, Journal of Luminescence 124, 260 (2007).
http://dx.doi.org/10.1016/j.jlumin.2006.03.011
12.
12. B. Yan, R. Chen, W. Zhou, J. Zhang, H. Sun, H. Gong, and T. Yu, Nanotechnology 21, 445706 (2010).
http://dx.doi.org/10.1088/0957-4484/21/44/445706
13.
13. F. Fang, D. Zhao, B. Li, Z. Zhang, D. Shen, and X. Wang, J. Phys. Chem. C 114, 12477 (2010).
http://dx.doi.org/10.1021/jp1037975
14.
14. H. U. Baranger, A. H. Mac Donald, C. R. Leavens, Phys. Rev. B 31, 6197 (1885).
http://dx.doi.org/10.1103/PhysRevB.31.6197
15.
15. R. M. Feenstra, Phys. Rev. B 50, 4561 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.4561
16.
16. J.-J. Wu, and S.-C. Liu, J. Phys. Chem. B 106, 9546 (2002).
http://dx.doi.org/10.1021/jp025969j
17.
17. Joint Committee of Powder Diffraction Standards (JCPDS) card number 36-1451.
18.
18. T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).
http://dx.doi.org/10.1103/PhysRev.142.570
19.
19. R. Cusco, E. Alarcon-Llado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, and M. J. Callahan, Phys. Rev. B 75, 165202 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.165202
20.
20. K. A. Alim, V. A. Fonoberov and A. A. Balandin, Appl. Phys. Lett. 86, 053103 (2005).
http://dx.doi.org/10.1063/1.1861509
21.
21. K. A. Alim, V. A. Fonoberov, M. Shamsa and A. A. Balandin, J. Appl. Phys. 97, 124313 (2005).
http://dx.doi.org/10.1063/1.1944222
22.
22. R. Tubino, L. Piseri, and G. Zerbi, J. Chem. Phys. 56, 1022 (1972).
http://dx.doi.org/10.1063/1.1677264
23.
23. S. Dhara, S. Chandra, G. Mangamma, S. Kalavathi, P. Shankar, K. G. M. Nair, A. K. Tyagi, C. W. Hsu, C. C. Kuo, L. C. Chen, and K. K , Sriram, Appl. Phys. Lett. 90, 213104 (2007).
http://dx.doi.org/10.1063/1.2741410
24.
24. A. Kaschner, A. Hoffmann, and C. Thomsen, Phys. Rev. B 64, 165314 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.165314
25.
25. J. F. Scott, Phys. Rev. B 2, 1209 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.1209
26.
26. S. Bera. S. Dhara, M. Kamruddin, S. Velmurugan, A. K. Tyagi (to be communicated).
27.
27. X. L. Wu, G. G. Siu, C. L. Fu, H. C. Ong, Appl. Phys. Lett. 78, 2285 (2001).
http://dx.doi.org/10.1063/1.1361288
28.
28. F. Matino, L. Persano, V. Arima, D. Pisignano, R. I. R. Blyth, R. Cingolani, R. Rinaldi, Phys. Rev. B 72, 085437 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085437
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3628347
Loading
/content/aip/journal/adva/1/3/10.1063/1.3628347
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3628347
2011-08-11
2016-09-26

Abstract

Vibronic and optoelectronic properties, along with detailed studies of exciton-phonon coupling at room temperature (RT) for random and aligned ZnOnanorods are reported. Excitation energy dependent Raman studies are performed for detailed analysis of multi-phonon processes in the nanorods. We report here the origin of coupling between free exciton and its associated phonon replicas, including its higher order modes, in the photoluminescence spectra at RT. Resonance of excitonic electron and resonating first order zone center LO phonon, invoked strongly by Frolich interaction, are made responsible for the observed phenomenon.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3628347.html;jsessionid=aw9kCc87s8GjFQ5R1gipwigs.x-aip-live-02?itemId=/content/aip/journal/adva/1/3/10.1063/1.3628347&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3628347&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3628347'
Right1,Right2,Right3,