Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. F. Liu, G. Bai, Y. Huang, Y. F. Ma, F. Du, F. F. Li, T. Y. Guo and Y. S. Chen, Carbon 45, 821 (2007).
2. P. C. P. Watts, W. K. Hsu, A. Barnes and B. Chambers, Adv. Mater. 15, 600 (2003).
3. R. C. Che, L. M. Peng, X. F. Duan, Q. Chen and X. L. Liang, Adv. Mater. 16, 401 (2004).
4. R. T. Lv, F. Y. Kang, J. L. Gu, X. C. Gui, J. Q. Wei, K. L. Wang and D. H. Wu, Appl. Phys. Lett. 93, 223105 (2008).
5. Q. L. Liu, D. Zhang and T. X. Fan, Appl. Phys. Lett. 93, 013110 (2008).
6. J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao and S. C. Wu, J. Phys. Chem. C 114, 7611 (2010).
7. S. C. Chiu, H. C. Yu and Y. Y. Li, J. Phys. Chem. C 114, 1947 (2010).
8. Y. J. Li, R. Wang, F. M. Qi and C. M. Wang, Appl. Surf. Sci. 254, 4708 (2008).
9. Z. T. Liu, S. Kirihara, Y. Miyamoto and D. Zhang, J. Am. Ceram. Soc. 89, 2492 (2006).
10. E. Tan, Y. Kagawa and A. F. Dericioglu, J. Mater. Sci. 44, 1172 (2009).
11. H. L. Zhu, F. D. Han, N. Lun, Y. X. Qi, Y. J. Bai, J. Q. Bi, X. L. Meng, B. Zhang, Y. Wang, J. R. Liu and R. H. Fan, J. Am. Ceram. Soc. 93, 2415 (2010).
12. X. G. Liu, Y. D. Wang, L. Wang, J. G. Xue and X. Y. Lan, J. Inorg. Mater 25, 441 (2010).
13. Y. Naito and K. Suetake, IEEE Trans. Microwave Theory Tech. 19, 65 (1971).
14. E. Michielssen, J. Sajer, S. Ranjithan and R. Mittra, IEEE Trans. Microwave Theory Tech. 41, 1024 (1998).
15. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (2nd ed.): Butterworth-Heinemann: Oxford, 1997.
16. Y. Chen, P. Gao, R. Wang, C. Zhu, L. Wang, M. Cao and Jin, H. J. Phys. Chem. C 113, 10061 (2009).
17. G. Mu, N. Chen, X. Pan, K. Yang and M. Gu, Appl. Phys. Lett. 91, 043110 (2009).
18. J. Wang, C. Xiang, Q. Liu, Y. Pan, J. Guo, Adv. Funct. Mater. 18, 2995 (2008).
19. B. Meng, B. Klein, J. Booske, R. Cooper, Phys. Rev. B. 53, 12777 (1996).
20. X. Zhang, X. Dong, H. Huang, B. Lv, J. Lei and C. Choi, J. Phys. D: Appl. Phys. 40, 5383 (2007).
21. X. Liu, D. Geng, H. Meng, P. Shang and Z. Zhang, Appl. Phys. Lett. 92, 173117 (2009).
22. X. Pan, G. Mu, H. Shen and M. Gu, Appl. Surf. Sci. 253, 4119 (2007).
23. D. Yan, S. Cheng, R. F. Zhuo, J. T. Chen, J. J. Feng, H. T. Feng, H. J. Li, Z. G. Wu, J. Wang and P. X. Yan, Nanotechnology 20, 105706 (2009).
24. M. Alaghemandi, E. Algaer, M. Böhm and F. Müller-Plathe, Nanotechnology, 20, 115704 (2009).
25. T. Choi, D. Poulikakos, J. Tharian and U. Sennhauser, Nano Lett 6, 1589 (2006).
26.See supplementary material at for TEM images of the pristine MWCNTs, deformed CNTs and SiC spheres, and hollow carbon spheres in S-200. [Supplementary Material]

Data & Media loading...


Article metrics loading...



The composites containing SiC and multiwalled carbon nanotubes(MWCNTs) were synthesized via the reaction of Si powders and MWCNTs induced by that of Na and sulfur. The MWCNT-SiC composites prepared at 600 °C exhibit excellent microwave absorbing properties, which reach a minimum reflection loss of -38.7 dB at a frequency around 12.9 GHz. The absorbing properties are bound up with the high yield of porous SiC spheres comprised of nanocrystals. The porous structure, high density of stacking faults in SiC crystallites, interfaces between MWCNTs and SiC spheres, grain boundaries between SiC nanocrystals, as well as the interfacial polarizations aroused therefrom, are responsible for the excellent microwave absorbing properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd