1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Microwave absorption properties of MWCNT-SiC composites synthesized via a low temperature induced reaction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3630126
1.
1. Z. F. Liu, G. Bai, Y. Huang, Y. F. Ma, F. Du, F. F. Li, T. Y. Guo and Y. S. Chen, Carbon 45, 821 (2007).
http://dx.doi.org/10.1016/j.carbon.2006.11.020
2.
2. P. C. P. Watts, W. K. Hsu, A. Barnes and B. Chambers, Adv. Mater. 15, 600 (2003).
http://dx.doi.org/10.1002/adma.200304485
3.
3. R. C. Che, L. M. Peng, X. F. Duan, Q. Chen and X. L. Liang, Adv. Mater. 16, 401 (2004).
http://dx.doi.org/10.1002/adma.200306460
4.
4. R. T. Lv, F. Y. Kang, J. L. Gu, X. C. Gui, J. Q. Wei, K. L. Wang and D. H. Wu, Appl. Phys. Lett. 93, 223105 (2008).
http://dx.doi.org/10.1063/1.3042099
5.
5. Q. L. Liu, D. Zhang and T. X. Fan, Appl. Phys. Lett. 93, 013110 (2008).
http://dx.doi.org/10.1063/1.2957035
6.
6. J. H. Zhou, J. P. He, G. X. Li, T. Wang, D. Sun, X. C. Ding, J. Q. Zhao and S. C. Wu, J. Phys. Chem. C 114, 7611 (2010).
http://dx.doi.org/10.1021/jp911030n
7.
7. S. C. Chiu, H. C. Yu and Y. Y. Li, J. Phys. Chem. C 114, 1947 (2010).
http://dx.doi.org/10.1021/jp905127t
8.
8. Y. J. Li, R. Wang, F. M. Qi and C. M. Wang, Appl. Surf. Sci. 254, 4708 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.01.076
9.
9. Z. T. Liu, S. Kirihara, Y. Miyamoto and D. Zhang, J. Am. Ceram. Soc. 89, 2492 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2006.01071.x
10.
10. E. Tan, Y. Kagawa and A. F. Dericioglu, J. Mater. Sci. 44, 1172 (2009).
http://dx.doi.org/10.1007/s10853-009-3257-6
11.
11. H. L. Zhu, F. D. Han, N. Lun, Y. X. Qi, Y. J. Bai, J. Q. Bi, X. L. Meng, B. Zhang, Y. Wang, J. R. Liu and R. H. Fan, J. Am. Ceram. Soc. 93, 2415 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.03731.x
12.
12. X. G. Liu, Y. D. Wang, L. Wang, J. G. Xue and X. Y. Lan, J. Inorg. Mater 25, 441 (2010).
http://dx.doi.org/10.3724/SP.J.1077.2010.00441
13.
13. Y. Naito and K. Suetake, IEEE Trans. Microwave Theory Tech. 19, 65 (1971).
http://dx.doi.org/10.1109/TMTT.1971.1127446
14.
14. E. Michielssen, J. Sajer, S. Ranjithan and R. Mittra, IEEE Trans. Microwave Theory Tech. 41, 1024 (1998).
http://dx.doi.org/10.1109/22.238519
15.
15. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (2nd ed.): Butterworth-Heinemann: Oxford, 1997.
16.
16. Y. Chen, P. Gao, R. Wang, C. Zhu, L. Wang, M. Cao and Jin, H. J. Phys. Chem. C 113, 10061 (2009).
http://dx.doi.org/10.1021/jp902296z
17.
17. G. Mu, N. Chen, X. Pan, K. Yang and M. Gu, Appl. Phys. Lett. 91, 043110 (2009).
http://dx.doi.org/10.1063/1.2764440
18.
18. J. Wang, C. Xiang, Q. Liu, Y. Pan, J. Guo, Adv. Funct. Mater. 18, 2995 (2008).
http://dx.doi.org/10.1002/adfm.200701406
19.
19. B. Meng, B. Klein, J. Booske, R. Cooper, Phys. Rev. B. 53, 12777 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.12777
20.
20. X. Zhang, X. Dong, H. Huang, B. Lv, J. Lei and C. Choi, J. Phys. D: Appl. Phys. 40, 5383 (2007).
http://dx.doi.org/10.1088/0022-3727/40/17/056
21.
21. X. Liu, D. Geng, H. Meng, P. Shang and Z. Zhang, Appl. Phys. Lett. 92, 173117 (2009).
http://dx.doi.org/10.1063/1.2919098
22.
22. X. Pan, G. Mu, H. Shen and M. Gu, Appl. Surf. Sci. 253, 4119 (2007).
http://dx.doi.org/10.1016/j.apsusc.2006.09.013
23.
23. D. Yan, S. Cheng, R. F. Zhuo, J. T. Chen, J. J. Feng, H. T. Feng, H. J. Li, Z. G. Wu, J. Wang and P. X. Yan, Nanotechnology 20, 105706 (2009).
http://dx.doi.org/10.1088/0957-4484/20/10/105706
24.
24. M. Alaghemandi, E. Algaer, M. Böhm and F. Müller-Plathe, Nanotechnology, 20, 115704 (2009).
http://dx.doi.org/10.1088/0957-4484/20/11/115704
25.
25. T. Choi, D. Poulikakos, J. Tharian and U. Sennhauser, Nano Lett 6, 1589 (2006).
http://dx.doi.org/10.1021/nl060331v
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.3630126 for TEM images of the pristine MWCNTs, deformed CNTs and SiC spheres, and hollow carbon spheres in S-200. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3630126
Loading
/content/aip/journal/adva/1/3/10.1063/1.3630126
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3630126
2011-08-18
2014-09-03

Abstract

The composites containing SiC and multiwalled carbon nanotubes(MWCNTs) were synthesized via the reaction of Si powders and MWCNTs induced by that of Na and sulfur. The MWCNT-SiC composites prepared at 600 °C exhibit excellent microwave absorbing properties, which reach a minimum reflection loss of -38.7 dB at a frequency around 12.9 GHz. The absorbing properties are bound up with the high yield of porous SiC spheres comprised of nanocrystals. The porous structure, high density of stacking faults in SiC crystallites, interfaces between MWCNTs and SiC spheres, grain boundaries between SiC nanocrystals, as well as the interfacial polarizations aroused therefrom, are responsible for the excellent microwave absorbing properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3630126.html;jsessionid=8hc0osakulc2f.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3630126&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Microwave absorption properties of MWCNT-SiC composites synthesized via a low temperature induced reaction
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3630126
10.1063/1.3630126
SEARCH_EXPAND_ITEM