Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Hori, Gate Dielectrics and MOS ULSIs, Principles, Technologies, and Applications (Springer, 1997).
2. S. Zhang, P. M. Levy, A. C. Marley, and S. S. P. Parkin, Phys. Rev. Lett. 79, 3744 (1997).
3. J. S. Moodera, J. Nowak, and R. J. M. van de Veerdonk, Phys. Rev. Lett. 80, 2941 (1998).
4. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).
5. J. G. Zhu and C. Park, Materials Today 9, 36 (2006).
6. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).
7. J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nature Nanotechnology 3, 429 (2008).
8. L. O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).
9. L. O. Chua and S. M. Kang, Proc. IEEE 64, 209 (1976).
10. M. Di Ventra, Y. V. Pershin, and L. O. Chua, Proc. IEEE 97, 1717 (2009).
11. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Lett. 10, 1297 (2010).
12. T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J. K. Gimzewski, and M. Aono, Adv. Mater. 22, 1831 (2010).
13. H. T. Li, Y. D. Xia, B. Xu, H. X. Guo, J. Yin, and Z. G. Liu, Appl. Phys. Lett. 97, 012902 (2010).
14. J. J. Yang, J. P. Strachan, Q. F. Xia, D. A. A. Ohlberg, P. J. Kuekes, R. D. Kelley, W. F. Stickle, D. R. Stewart, G. Medeiros-Ribeiro, and R. S. Williams, Adv, Mater. 22, 4034 (2010).
15. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
16. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature 433, 47 (2005).
17. M. N. Kozicki, M. Park, and M. Mitkova, IEEE Trans. Nanotechnol. 4, 331 (2005).
18. L. Chen, Z. G. Liu, Y. D. Xia, K. B. Yin, L. G. Gao, and J. Yin, Appl. Phys. Lett. 94, 162112 (2009).
19. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
20. D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nature Nanotechnology 5, 148 (2010).
21. J. P. Strachan, M. D. Pickett, J. J. Yang, S. Aloni, A. L. D. Kilcoyne, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 22, 3573 (2010).
22. Ch. Walczyk, Ch. Wenger, D. Walczyk, M. Lukosius, I. Costina, M. Fraschke, J. Dabrowski, A. Fox, D. Wolansky, S. Thiess, E. Miranda, B. Tillack, and T. Schroeder, J. Vac. Sci. Technol. B, 29, 01AD02 (2011).
23. M.-J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, Nano Lett. 9, 1476 (2009).
24. S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C. U. Jung, S. Seo, M.-J. Lee, and T. W. Noh, Adv. Mater. 20, 1154 (2008).
25. K. Li, Y. D. Xia, B. Xu, X. Gao, H. X. Guo, Z. G. Liu, and J. Yin, Appl. Phys. Lett. 96, 182904 (2010).
26. J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N. Lau, and R. S. Williams, Nanotechnology 20, 215209 (2009).
27. C. P. Hsiung, J. Y. Gan, S. H. Tseng, N. H. Tai, P. J. Tzeng, C. H. Lin, F. Chen, and M. J. Tsai, Electrochem. Solid-State Lett. 12, G31 (2009).
28. C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, C. Hu and T.-Y. T, J. The Electrochem. Soc. 154, G189 (2007).
29. S. X. Wu, H. Y. Peng, and T. Wu, Appl. Phys. Lett. 98, 093503 (2011).
30. B. V. Crist, Handbook of Monochromatic XPS Spectra, The Elements Of Native Oxides (John Wiley & Sons, 2000).
31. H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, Appl. Phys. Lett. 96, 192113 (2010).
32. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Third Edition (John Wiley & Sons, 2007).
33. We also assume εi keeps unchanged during the switching. The serial capacitors, caused by the existence of interfacial layer, decrease the effective permittivity of the whole system. This decrease should result in the increase in slope regardless of the exact permittivity of the interfacial layer. But, it is contrary to the experimental data that the slope decreases after the RESET process, indicating the change in slopes mainly comes from the increase in thickness. So, we herein assume the constant εi and only consider the result of the thickness just for simplification.
34. We here exclude the impact of Joule heating on the recovery of the devices. If Joule heating does work, the recovery will also be accomplished by loading positive biases. Unfortunately, the devices cannot be recovered by positive operation. This result demonstrates the crucial role of the polarity of electrical operation.

Data & Media loading...


Article metrics loading...



We have proposed a kind of memristive device based on the junctions employing Ti as the reactive electrodes. The role of electrically-derived redox of Ti in such memristive switching is shown. The structural and chemical evidence of the electrically-derived oxidation is presented by TEM and XPS experiment, respectively. Due to the redox of the top electrode Ti and the consequent drift of oxygen vacancies, the device shows two distinct resistance states under a sweeping voltage loading. ON state is controlled by tunneling process, while OFF state is controlled by Schottky emission conductive mechanism. The failure behaviors of such memristive junctions are also discussed. In the light of the redox principle, we demonstrate that the devices could be recovered by loading a long electrical reduction treatment.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd