Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3631773
1.
1. M. J. Ogorzalek. Taming chaos. I. Synchronization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40(10):693699,1993.
http://dx.doi.org/10.1109/81.246145
2.
2. G. Kolumban, M. P. Kennedy and L. O. Chua. The role of synchronization in digital communications using chaos.II. Chaotic modulation and chaotic synchronization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45(11):11291140,1998.
http://dx.doi.org/10.1109/81.735435
3.
3. H. Dedieu, M. P. Kennedy and M. Hasler. Chaos shift keying: modulation and demodulation of a chaoticcarrier using self-synchronizing Chua's circuits IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40(10):634642,1993.
4.
4. A. Pikovsky, M. Rosenblum, and J. Kürths - Synchronization, A Universal concept in Nonlinear Systems, Cambridge Nonlinear Science Series 12 (Cambridge University Press, UK, 2001) and references therein.
5.
5. Kuang-Yow Lian Liu ,P. Tung-Sheng Chiang Chian-Song Chiu. Adaptive synchronization design for chaotic systems via a scalardriving signal. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(1):1727,2002.
http://dx.doi.org/10.1109/81.974871
6.
6. H. Fujisaka and T. Yamada. Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. Progress of Theoretical Physics,69(1):3247,1983,
http://dx.doi.org/10.1143/PTP.69.32
6.L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Physical Review Letters, 64:82124,1990.
http://dx.doi.org/10.1103/PhysRevLett.64.821
7.
7. J. M. Gonzalez-Miranda. Synchronization of symmetric chaotic systems. Physical Review E, 53:565669,1996.
http://dx.doi.org/10.1103/PhysRevE.53.5656
8.
8. M. G. Rosenblum, A. S. Pikovsky and J. Kurths. Phase Synchronization of Chaotic Oscillators. Physical Review Letters,76:180407,1996,
http://dx.doi.org/10.1103/PhysRevLett.76.1804
8.T. Yalcinkaya and Y. C. Lai. Phase Characterization of Chaos. Physical Review Letters, 79:388588,1997,
http://dx.doi.org/10.1103/PhysRevLett.79.3885
8.D. V. Senthilkumar, M. Lakshmanan and J. Kurths. Phase synchronization in time-delay systems. Physical Review E, 74:035205R,2006.
http://dx.doi.org/10.1103/PhysRevE.74.035205
9.
9. D. Ghosh. Generalized projective synchronization in time-delayed systems: Nonlinear observer approach. Chaos, 19: 013102,2009.
http://dx.doi.org/10.1063/1.3054711
10.
10. M. Zhan, G. W. Wei and C. H. Lai. Transition from intermittency to periodicity in lag synchronization in coupled Rossler oscillators. Physical Review E, 65:036202,2002.
http://dx.doi.org/10.1103/PhysRevE.65.036202
11.
11. S. Banerjee, D. Ghosh, and A. Roy Chowdhury. Multiplexing synchronization and its applications in cryptography. Physica Scripta, 78:015010,2008.
http://dx.doi.org/10.1088/0031-8949/78/01/015010
12.
12. H. D. I. Abarbanel, N. F. Rulkov and M. M. Suschik. Generalized synchronization of chaos: The auxiliary system approach. Physical Review E, 53:452835,1996.
http://dx.doi.org/10.1103/PhysRevE.53.4528
13.
13. T. Yang and L. O. Chua. Generalized synchronization of chaos via linear transformations. International Journal of Bifurcation Chaos, 9:21519,1999.
http://dx.doi.org/10.1142/S0218127499000092
14.
14. H. Zang and L. Min. Generalized synchronization theorems for a kind of Neural Network with application in data encryption. ICIEA 2008 3rd IEEE Conference on Industrial Electronics and Applications 40(10):693699,1993.
15.
15. Y. C. Wang, S. G. Adams, J. S. Thorp, N. C. MacDonald, P. Hartwell and F. Bertsch. Chaos in MEMS, parameter estimation and its potential application. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45(10):10131020,1998.
http://dx.doi.org/10.1109/81.728856
16.
16. A. Maybhate and R. E. Amritkar. Use of synchronization and adaptive control in parameter estimation from a time series. Physical Review E, 59:28493,1999.
http://dx.doi.org/10.1103/PhysRevE.59.284
17.
17. U. Parlitz, L. Junge and L. Kocarev. Synchronization-based parameter estimation from time series. Physical Review E, 54:625359,1996.
http://dx.doi.org/10.1103/PhysRevE.54.6253
18.
18. U. Parlitz. Estimating Model Parameters from Time Series by Autosynchronization. Physical Review Letters, 76:123235,1996.
http://dx.doi.org/10.1103/PhysRevLett.76.1232
19.
19. R. Konnur. Synchronization-based approach for estimating all model parameters of chaotic systems. Physical Review E, 67:027204,2003.
http://dx.doi.org/10.1103/PhysRevE.67.027204
20.
20. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis and C. Grebogi. Predicting Catastrophes in Nonlinear Dynamical Systems by Compressive Sensing. Physical Review Letters, 106:154101,2011.
http://dx.doi.org/10.1103/PhysRevLett.106.154101
21.
21. F. Takens, Detecting strange attractors in turbulence, in: D. A. Rand, L. S. Young (Eds.), Dynamical Systems and Turbulence, Springer, Berlin, 1981, pp. 366381,
21.H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, 1997.
22.
22. M. Chen and J. Kurths. Chaos synchronization and parameter estimation from a scalar output signal. Physical Review E, 76:027203,2007.
http://dx.doi.org/10.1103/PhysRevE.76.027203
23.
23. D. Huang, G. Xing and D. W. Wheeler. Multiparameter estimation using only a chaotic time series and its applications. Chaos, 17:023118,2007.
http://dx.doi.org/10.1063/1.2732495
24.
24. D. Ghosh and S. Banerjee. Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications. Physical Review E, 78:056211,2008.
http://dx.doi.org/10.1103/PhysRevE.78.056211
25.
25. D. Ghosh. Nonlinear-observer-based synchronization scheme for multiparameter estimation. Europhysics Letters, 84:40012, 2008.
http://dx.doi.org/10.1209/0295-5075/84/40012
26.
26. F. T Arecchi, R. Meucci, E. Allaria, A. Di Garbo and L. S. Tsimring. Delayed self-synchronization in homoclinic chaos. Physical Review E, 65:046237,2002,
http://dx.doi.org/10.1103/PhysRevE.65.046237
26.R. Hegger, M. J. Bunner, H. Kantz and A. Giaquinta. Identifying and Modeling Delay Feedback Systems. Physical Review Letters, 81:558,1998,
http://dx.doi.org/10.1103/PhysRevLett.81.558
26.M. J. Bunner, Th. Meyer, A. Kittel and J. Parisi. Recovery of the time-evolution equation of time-delay systems from time series. Physical Review E, 56:5083,1997,
http://dx.doi.org/10.1103/PhysRevE.56.5083
26.V. I. Ponomarenko and M. D. Prokhorov. Extracting information masked by the chaotic signal of a time-delay system. Physical Review E, 66:026215,2002,
http://dx.doi.org/10.1103/PhysRevE.66.026215
26.C. Zhou, C.-H. Lai. Extracting messages masked by chaotic signals of time-delay systems. Physical Review E, 60:320,1999.
http://dx.doi.org/10.1103/PhysRevE.60.320
27.
27. K. M. Short and A. T. Parker. Unmasking a hyperchaotic communication scheme. Physical Review E, 58: 1159,1998.
http://dx.doi.org/10.1103/PhysRevE.58.1159
28.
28. N. N. Krasovskii, Stability of Motion (Stanford University Press, Stanford, 1963).
29.
29. M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science, 197:28789,1977.
http://dx.doi.org/10.1126/science.267326
30.
30. K. Ikeda, H. Daido and O. Akimoto. Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity. Physical Review Letters, 45:70912,1980,
http://dx.doi.org/10.1103/PhysRevLett.45.709
30.K. Ikeda, K. Kondo and O. Akimoto. Successive Higher-Harmonic Bifurcations in Systems with Delayed Feedback. Physical Review Letters, 49:146770,1982.
http://dx.doi.org/10.1103/PhysRevLett.49.1467
31.
31. J. P. Goedgebuer, L. Larger and H. Porte. Chaos in wavelength with a feedback tunable laser diode. Physical Review E, 57:279598,1998.
http://dx.doi.org/10.1103/PhysRevE.57.2795
32.
32. R. Vallee and C. Delisle. Periodicity windows in a dynamical system with a delayed feedback. Physical Review A, 34:30918,1986.
http://dx.doi.org/10.1103/PhysRevA.34.309
33.
33. D. Ghosh, S. Banerjee and A. Roy Chowdhury. Synchronization between variable time-delayed systems and cryptography. Europhysics Letters, 80:30006,2007,
http://dx.doi.org/10.1209/0295-5075/80/30006
33.S. Banerjee, D. Ghosh, A. Ray and A. Roy Chowdhury. Synchronization between two different time-delayed systems and image encryption. Europhysics Letters, 81:20006,2008.
http://dx.doi.org/10.1209/0295-5075/81/20006
34.
34. A. Tamasevicius, A. Cenys, G. Mykolaitis, A. Namajunas and E. Lindberg. Hyperchaotic oscillator with gyrators. IEEE Electronics Letters, 33(7):54244,1997.
http://dx.doi.org/10.1049/el:19970393
35.
35. A. Ucar. On the chaotic behaviour of a prototype delayed dynamical system. Chaos, Solitons & Fractals, 16(2):18794,2003.
http://dx.doi.org/10.1016/S0960-0779(02)00160-1
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3631773
Loading
/content/aip/journal/adva/1/3/10.1063/1.3631773
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3631773
2011-08-18
2016-12-05

Abstract

We propose a nonlinear active observer based generalized synchronization scheme for multiparameter estimation in time-delayed systems with periodic time delay. A sufficient condition for parameter estimation is derived using Krasovskii-Lyapunov theory. The suggested tool proves to be globally and asymptotically stable by means of Krasovskii-Lyapunov method. With this effective method, parameter identification and generalized synchronization of modulated time-delayed systems with all the system parameters unknown, can be achieved simultaneously. We restrict our study for multiple parameter estimation in modulated time-delayed systems with single state variable only. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed technique. The block diagram of electronic circuit for multiple time delay system shows that the method is easily applicable in practical communication problems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3631773.html;jsessionid=c1LmNiA3zxAy3Nq1IQhNWT4t.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3631773&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3631773&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3631773'
Right1,Right2,Right3,