Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. J. Ogorzalek. Taming chaos. I. Synchronization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40(10):693699,1993.
2. G. Kolumban, M. P. Kennedy and L. O. Chua. The role of synchronization in digital communications using chaos.II. Chaotic modulation and chaotic synchronization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45(11):11291140,1998.
3. H. Dedieu, M. P. Kennedy and M. Hasler. Chaos shift keying: modulation and demodulation of a chaoticcarrier using self-synchronizing Chua's circuits IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 40(10):634642,1993.
4. A. Pikovsky, M. Rosenblum, and J. Kürths - Synchronization, A Universal concept in Nonlinear Systems, Cambridge Nonlinear Science Series 12 (Cambridge University Press, UK, 2001) and references therein.
5. Kuang-Yow Lian Liu ,P. Tung-Sheng Chiang Chian-Song Chiu. Adaptive synchronization design for chaotic systems via a scalardriving signal. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(1):1727,2002.
6. H. Fujisaka and T. Yamada. Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. Progress of Theoretical Physics,69(1):3247,1983,
6.L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Physical Review Letters, 64:82124,1990.
7. J. M. Gonzalez-Miranda. Synchronization of symmetric chaotic systems. Physical Review E, 53:565669,1996.
8. M. G. Rosenblum, A. S. Pikovsky and J. Kurths. Phase Synchronization of Chaotic Oscillators. Physical Review Letters,76:180407,1996,
8.T. Yalcinkaya and Y. C. Lai. Phase Characterization of Chaos. Physical Review Letters, 79:388588,1997,
8.D. V. Senthilkumar, M. Lakshmanan and J. Kurths. Phase synchronization in time-delay systems. Physical Review E, 74:035205R,2006.
9. D. Ghosh. Generalized projective synchronization in time-delayed systems: Nonlinear observer approach. Chaos, 19: 013102,2009.
10. M. Zhan, G. W. Wei and C. H. Lai. Transition from intermittency to periodicity in lag synchronization in coupled Rossler oscillators. Physical Review E, 65:036202,2002.
11. S. Banerjee, D. Ghosh, and A. Roy Chowdhury. Multiplexing synchronization and its applications in cryptography. Physica Scripta, 78:015010,2008.
12. H. D. I. Abarbanel, N. F. Rulkov and M. M. Suschik. Generalized synchronization of chaos: The auxiliary system approach. Physical Review E, 53:452835,1996.
13. T. Yang and L. O. Chua. Generalized synchronization of chaos via linear transformations. International Journal of Bifurcation Chaos, 9:21519,1999.
14. H. Zang and L. Min. Generalized synchronization theorems for a kind of Neural Network with application in data encryption. ICIEA 2008 3rd IEEE Conference on Industrial Electronics and Applications 40(10):693699,1993.
15. Y. C. Wang, S. G. Adams, J. S. Thorp, N. C. MacDonald, P. Hartwell and F. Bertsch. Chaos in MEMS, parameter estimation and its potential application. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45(10):10131020,1998.
16. A. Maybhate and R. E. Amritkar. Use of synchronization and adaptive control in parameter estimation from a time series. Physical Review E, 59:28493,1999.
17. U. Parlitz, L. Junge and L. Kocarev. Synchronization-based parameter estimation from time series. Physical Review E, 54:625359,1996.
18. U. Parlitz. Estimating Model Parameters from Time Series by Autosynchronization. Physical Review Letters, 76:123235,1996.
19. R. Konnur. Synchronization-based approach for estimating all model parameters of chaotic systems. Physical Review E, 67:027204,2003.
20. W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis and C. Grebogi. Predicting Catastrophes in Nonlinear Dynamical Systems by Compressive Sensing. Physical Review Letters, 106:154101,2011.
21. F. Takens, Detecting strange attractors in turbulence, in: D. A. Rand, L. S. Young (Eds.), Dynamical Systems and Turbulence, Springer, Berlin, 1981, pp. 366381,
21.H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, 1997.
22. M. Chen and J. Kurths. Chaos synchronization and parameter estimation from a scalar output signal. Physical Review E, 76:027203,2007.
23. D. Huang, G. Xing and D. W. Wheeler. Multiparameter estimation using only a chaotic time series and its applications. Chaos, 17:023118,2007.
24. D. Ghosh and S. Banerjee. Adaptive scheme for synchronization-based multiparameter estimation from a single chaotic time series and its applications. Physical Review E, 78:056211,2008.
25. D. Ghosh. Nonlinear-observer-based synchronization scheme for multiparameter estimation. Europhysics Letters, 84:40012, 2008.
26. F. T Arecchi, R. Meucci, E. Allaria, A. Di Garbo and L. S. Tsimring. Delayed self-synchronization in homoclinic chaos. Physical Review E, 65:046237,2002,
26.R. Hegger, M. J. Bunner, H. Kantz and A. Giaquinta. Identifying and Modeling Delay Feedback Systems. Physical Review Letters, 81:558,1998,
26.M. J. Bunner, Th. Meyer, A. Kittel and J. Parisi. Recovery of the time-evolution equation of time-delay systems from time series. Physical Review E, 56:5083,1997,
26.V. I. Ponomarenko and M. D. Prokhorov. Extracting information masked by the chaotic signal of a time-delay system. Physical Review E, 66:026215,2002,
26.C. Zhou, C.-H. Lai. Extracting messages masked by chaotic signals of time-delay systems. Physical Review E, 60:320,1999.
27. K. M. Short and A. T. Parker. Unmasking a hyperchaotic communication scheme. Physical Review E, 58: 1159,1998.
28. N. N. Krasovskii, Stability of Motion (Stanford University Press, Stanford, 1963).
29. M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science, 197:28789,1977.
30. K. Ikeda, H. Daido and O. Akimoto. Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity. Physical Review Letters, 45:70912,1980,
30.K. Ikeda, K. Kondo and O. Akimoto. Successive Higher-Harmonic Bifurcations in Systems with Delayed Feedback. Physical Review Letters, 49:146770,1982.
31. J. P. Goedgebuer, L. Larger and H. Porte. Chaos in wavelength with a feedback tunable laser diode. Physical Review E, 57:279598,1998.
32. R. Vallee and C. Delisle. Periodicity windows in a dynamical system with a delayed feedback. Physical Review A, 34:30918,1986.
33. D. Ghosh, S. Banerjee and A. Roy Chowdhury. Synchronization between variable time-delayed systems and cryptography. Europhysics Letters, 80:30006,2007,
33.S. Banerjee, D. Ghosh, A. Ray and A. Roy Chowdhury. Synchronization between two different time-delayed systems and image encryption. Europhysics Letters, 81:20006,2008.
34. A. Tamasevicius, A. Cenys, G. Mykolaitis, A. Namajunas and E. Lindberg. Hyperchaotic oscillator with gyrators. IEEE Electronics Letters, 33(7):54244,1997.
35. A. Ucar. On the chaotic behaviour of a prototype delayed dynamical system. Chaos, Solitons & Fractals, 16(2):18794,2003.

Data & Media loading...


Article metrics loading...



We propose a nonlinear active observer based generalized synchronization scheme for multiparameter estimation in time-delayed systems with periodic time delay. A sufficient condition for parameter estimation is derived using Krasovskii-Lyapunov theory. The suggested tool proves to be globally and asymptotically stable by means of Krasovskii-Lyapunov method. With this effective method, parameter identification and generalized synchronization of modulated time-delayed systems with all the system parameters unknown, can be achieved simultaneously. We restrict our study for multiple parameter estimation in modulated time-delayed systems with single state variable only. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed technique. The block diagram of electronic circuit for multiple time delay system shows that the method is easily applicable in practical communication problems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd