Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3631775
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. X. M. Li, H. W. Zhu, K. L. Wang, A. Y. Cao, J. Q. Wei, C. Y. Li, Y. Jia, Z. Li, X. Li, D. H. Wu, Adv. Mater. 22, 2743 (2010).
http://dx.doi.org/10.1002/adma.200904383
3.
3. F. Schwierz, Nature Nanotechnol. 5, 487 (2010).
http://dx.doi.org/10.1038/nnano.2010.89
4.
4. J. R. Miller, R. A. Outlaw, B. C. Holloway, Science 329, 1637 (2010).
http://dx.doi.org/10.1126/science.1194372
5.
5. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nature Photonics 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
6.
6. a) A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009);
http://dx.doi.org/10.1021/nl801827v
6.b) K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
7.
7. a) X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324, 1312 (2009);
http://dx.doi.org/10.1126/science.1171245
7.b) S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nature Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
8.
8. a) X. S. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Y. Han, M. Borysiak, W. W. Cai, A. Velamakanni, Y. W. Zhu, L. F. Fu, E. M. Vogel, E. Voelkl, L. Colombo, R. S. Ruoff, Nano Lett. 10, 4328 (2010);
http://dx.doi.org/10.1021/nl101629g
8.b) X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, R. S. Ruoff, J. Am. Chem. Soc. 133, 2816 (2011).
http://dx.doi.org/10.1021/ja109793s
9.
9. T. Iwasaki, H. J. Park, M. Konuma, D. S. Lee, J. H. Smet, U. Starke, Nano Lett. 11, 79 (2011).
http://dx.doi.org/10.1021/nl102834q
10.
10. S. Bhaviripudi, X. T. Jia, M. S. Dresselhaus, J. Kong, Nano Lett. 10, 4128 (2010).
http://dx.doi.org/10.1021/nl102355e
11.
11. L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn, A. N. Pasupathy, http://arxiv.org/abs/1008.3542v1.
12.
12. Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, Y. P. Chen, Nature Mater. 10, 443 (2011).
http://dx.doi.org/10.1038/nmat3010
13.
13. H. Ago, I. Tanaka, C. M. Orofeo, M. Tsuji, K. Ikeda, Small 6, 1226 (2010).
http://dx.doi.org/10.1002/smll.201090034
14.
14. N. Liu, L. Fu, B. Y. Dai, K. Yan, X. Liu, R. Q. Zhao, Y. F. Zhang, Z. F. Liu, Nano Lett. 11, 297 (2011).
http://dx.doi.org/10.1021/nl103962a
15.
15. L. Gao, J. R. Guest, N. P. Guisinger, Nano Lett. 10, 3512 (2010).
http://dx.doi.org/10.1021/nl1016706
16.
16. J. M. Wofford, S. Nie, K. F. McCarty, N. C. Bartelt, O. D. Dubon, Nano Lett. 10, 4890 (2010).
http://dx.doi.org/10.1021/nl102788f
17.
17. K. Yan, H. L. Peng, Y. Zhou, H. Li, Z. F. Liu, Nano Lett. 11, 1106 (2011).
http://dx.doi.org/10.1021/nl104000b
18.
18. A. W. Robertson, J. H. Warner, Nano Lett. 11, 1182 (2011).
http://dx.doi.org/10.1021/nl104142k
19.
19. a) G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. v. d. Brink, P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008);
http://dx.doi.org/10.1103/PhysRevLett.101.026803
19.b) Z. Xu, M. J. Buehler, J. Phys.: Conden. Matter 22, 485301 (2010).
http://dx.doi.org/10.1088/0953-8984/22/48/485301
20.
20. H. I. Rasool, E. B. Song, M. J. Allen, J. K. Wassei, R. B. Kaner, K. L. Wang, B. H. Weiller, J. K. Gimzewski, Nano Lett. 11, 251 (2011).
http://dx.doi.org/10.1021/nl1036403
21.
21. C. Mattevi, H. Kim, M. Chhowalla, J. Mater. Chem. 21, 3324 (2011).
http://dx.doi.org/10.1039/c0jm02126a
22.
22. D. Kandel, J. D. Weeks, Phys. Rev. B 49, 5554 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.5554
23.
23. S. Gunther, S. Danhardt, B. Wang, M.-L. Bocquet, S. Schmitt, J. Wintterlin, Nano Lett. 2011, doi: 10.1021/nl103947x.
http://dx.doi.org/10.1021/nl103947x
24.
24. S. Plimpton, Journal of Computational Physics 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
25.
25. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, S. B. Sinnott, Journal of Physics-Condensed Matter 14, 783 (2002).
http://dx.doi.org/10.1088/0953-8984/14/4/312
26.
26. S. M. Foiles, M. I. Baskes, M. S. Daw, Physical Review B 33, 7983 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.7983
27.
27. Z. Xu, M. J. Buehler, ACS Nano 3, 2767 (2009).
http://dx.doi.org/10.1021/nn9006237
28.
28. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Carlo, C. Davide, L. C. Guido, C. Matteo, D. Ismaila, C. Andrea Dal, G. Stefano de, F. Stefano, F. Guido, G. Ralph, G. Uwe, G. Christos, K. Anton, L. Michele, M.-S. Layla, M. Nicola, M. Francesco, M. Riccardo, P. Stefano, P. Alfredo, P. Lorenzo, S. Carlo, S. Sandro, S. Gabriele, P. S. Ari, A. Smogunov, P. Umari, R. M. Wentzcovitch, Journal of Physics: Condensed Matter 21, 395502 (2009).
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3631775
Loading
/content/aip/journal/adva/1/3/10.1063/1.3631775
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3631775
2011-08-18
2016-09-26

Abstract

The existence of surface steps was found to have significant function and influence on the growth of graphene on copper via chemical vapor deposition. The two typical growth modes involved were found to be influenced by the step morphologies on coppersurface, which led to our proposed step driven competitive growth mechanism. We also discovered a protective role of graphene in preserving steps on coppersurface. Our results showed that wide and high steps promoted epitaxialgrowth and yielded multilayer graphene domains with regular shape, while dense and low steps favored self-limited growth and led to large-area monolayergraphene films. We have demonstrated that controllable growth of graphene domains of specific shape and large-area continuous graphene films are feasible.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3631775.html;jsessionid=7CQmIGFPXdesdXFtlJ55lxUe.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3631775&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3631775&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3631775'
Right1,Right2,Right3,