Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).
2. X. M. Li, H. W. Zhu, K. L. Wang, A. Y. Cao, J. Q. Wei, C. Y. Li, Y. Jia, Z. Li, X. Li, D. H. Wu, Adv. Mater. 22, 2743 (2010).
3. F. Schwierz, Nature Nanotechnol. 5, 487 (2010).
4. J. R. Miller, R. A. Outlaw, B. C. Holloway, Science 329, 1637 (2010).
5. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nature Photonics 4, 611 (2010).
6. a) A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009);
6.b) K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 457, 706 (2009).
7. a) X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324, 1312 (2009);
7.b) S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nature Nanotechnol. 5, 574 (2010).
8. a) X. S. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Y. Han, M. Borysiak, W. W. Cai, A. Velamakanni, Y. W. Zhu, L. F. Fu, E. M. Vogel, E. Voelkl, L. Colombo, R. S. Ruoff, Nano Lett. 10, 4328 (2010);
8.b) X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, R. S. Ruoff, J. Am. Chem. Soc. 133, 2816 (2011).
9. T. Iwasaki, H. J. Park, M. Konuma, D. S. Lee, J. H. Smet, U. Starke, Nano Lett. 11, 79 (2011).
10. S. Bhaviripudi, X. T. Jia, M. S. Dresselhaus, J. Kong, Nano Lett. 10, 4128 (2010).
11. L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn, A. N. Pasupathy,
12. Q. K. Yu, L. A. Jauregui, W. Wu, R. Colby, J. F. Tian, Z. H. Su, H. L. Cao, Z. H. Liu, D. Pandey, D. G. Wei, T. F. Chung, P. Peng, N. Guisinger, E. A. Stach, J. M. Bao, S. S. Pei, Y. P. Chen, Nature Mater. 10, 443 (2011).
13. H. Ago, I. Tanaka, C. M. Orofeo, M. Tsuji, K. Ikeda, Small 6, 1226 (2010).
14. N. Liu, L. Fu, B. Y. Dai, K. Yan, X. Liu, R. Q. Zhao, Y. F. Zhang, Z. F. Liu, Nano Lett. 11, 297 (2011).
15. L. Gao, J. R. Guest, N. P. Guisinger, Nano Lett. 10, 3512 (2010).
16. J. M. Wofford, S. Nie, K. F. McCarty, N. C. Bartelt, O. D. Dubon, Nano Lett. 10, 4890 (2010).
17. K. Yan, H. L. Peng, Y. Zhou, H. Li, Z. F. Liu, Nano Lett. 11, 1106 (2011).
18. A. W. Robertson, J. H. Warner, Nano Lett. 11, 1182 (2011).
19. a) G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. v. d. Brink, P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008);
19.b) Z. Xu, M. J. Buehler, J. Phys.: Conden. Matter 22, 485301 (2010).
20. H. I. Rasool, E. B. Song, M. J. Allen, J. K. Wassei, R. B. Kaner, K. L. Wang, B. H. Weiller, J. K. Gimzewski, Nano Lett. 11, 251 (2011).
21. C. Mattevi, H. Kim, M. Chhowalla, J. Mater. Chem. 21, 3324 (2011).
22. D. Kandel, J. D. Weeks, Phys. Rev. B 49, 5554 (1994).
23. S. Gunther, S. Danhardt, B. Wang, M.-L. Bocquet, S. Schmitt, J. Wintterlin, Nano Lett. 2011, doi: 10.1021/nl103947x.
24. S. Plimpton, Journal of Computational Physics 117, 1 (1995).
25. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, S. B. Sinnott, Journal of Physics-Condensed Matter 14, 783 (2002).
26. S. M. Foiles, M. I. Baskes, M. S. Daw, Physical Review B 33, 7983 (1986).
27. Z. Xu, M. J. Buehler, ACS Nano 3, 2767 (2009).
28. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Carlo, C. Davide, L. C. Guido, C. Matteo, D. Ismaila, C. Andrea Dal, G. Stefano de, F. Stefano, F. Guido, G. Ralph, G. Uwe, G. Christos, K. Anton, L. Michele, M.-S. Layla, M. Nicola, M. Francesco, M. Riccardo, P. Stefano, P. Alfredo, P. Lorenzo, S. Carlo, S. Sandro, S. Gabriele, P. S. Ari, A. Smogunov, P. Umari, R. M. Wentzcovitch, Journal of Physics: Condensed Matter 21, 395502 (2009).

Data & Media loading...


Article metrics loading...



The existence of surface steps was found to have significant function and influence on the growth of graphene on copper via chemical vapor deposition. The two typical growth modes involved were found to be influenced by the step morphologies on coppersurface, which led to our proposed step driven competitive growth mechanism. We also discovered a protective role of graphene in preserving steps on coppersurface. Our results showed that wide and high steps promoted epitaxialgrowth and yielded multilayer graphene domains with regular shape, while dense and low steps favored self-limited growth and led to large-area monolayergraphene films. We have demonstrated that controllable growth of graphene domains of specific shape and large-area continuous graphene films are feasible.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd