1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electro-chemical deposition of zinc oxide nanostructures by using two electrodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3633476
1.
1. K. J. Choi and H. W. Jang, Sensors 10, 4083 (2010);
http://dx.doi.org/10.3390/s100404083
1.D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl. Phys. Lett. 70, 2230 (1997);
http://dx.doi.org/10.1063/1.118824
1.R. Jose, V. Thavasi and S. Ramakrishna, J. Am. Ceram. Soc. 92, 289 (2009);
http://dx.doi.org/10.1111/j.1551-2916.2008.02870.x
1.X. W. Sun and J. X. Wang, Nanoletters 8, 1884 (2008).
2.
2. M. Izaki, T. Shinagawa, and H. Takahashi, J. Appl. Phys. D. 39, 1481 (2006).
http://dx.doi.org/10.1088/0022-3727/39/8/004
3.
3. Z. L. Wang, X. Y. Kong, Y. Ding, P. X. Gao, W. L. Hughes, R. S. Yang and Y. Zhang, Adv. Funct. Mat. 14, 943 (2004).
http://dx.doi.org/10.1002/adfm.200400180
4.
4. Zhou Li, Rusen Yang, Min Yu, Fan Bai, Cheng Li and Zhong Lin Wang, J. Phys. Chem. C 112, 20115 (2008).
5.
5. D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones and R. Sizelove, Appl. Phys. Lett 75, 811 (1999).
http://dx.doi.org/10.1063/1.124521
6.
6. C. Xu, M. Kim, J. Chun and D. E. J. Kim, Nanotechnology 16, 2104 (2005);
http://dx.doi.org/10.1088/0957-4484/16/10/022
6.J. Elias, C. L. Clement, M. Bechelany, J. Michler, G. Y Wang, Z. Wang and L. Philippe, Adv. Mat. 22, 1607 (2010).
http://dx.doi.org/10.1002/adma.201090045
7.
7. Z. L. S. Seow, A. S. W. Wong, V. Thavasi, R. Jose, S. Ramakrishna and G. W. Ho, Nanotechnology 20, 045604 (2009).
http://dx.doi.org/10.1088/0957-4484/20/4/045604
8.
8. M. Izaki, T. Omi, Appl. Phys. Lett. 68, 2439 (1996).
http://dx.doi.org/10.1063/1.116160
9.
9. S. Peulon and D. Lincot, Adv. Mat. 8, 166 (1996).
http://dx.doi.org/10.1002/adma.19960080216
10.
10. R. Tena-Zaera, J. Elias, C Levy-Clement, C. Bekeney, T. Voss, I. Mora-Sero and J. Bisquert, J. Phys. Chem. C 112, 16318 (2008).
http://dx.doi.org/10.1021/jp804563a
11.
11. Sung Joong Kim, Hee-Gyoo Kang, Jinsub Choi, Current Appl. Phys. 10, 740 (2010).
http://dx.doi.org/10.1016/j.cap.2009.09.007
12.
12. Zhuo Zhang, Guowen Meng, Qiaoling Xu, Yemin Hu, Qiang Wu and Zheng Hu, J. Phys. Chem. C 114, 189 (2010).
http://dx.doi.org/10.1021/jp9087223
13.
13. M. S. Boeckl, A. L. Bramblett, K. D. Hauch, T. Sasaki, B. D. Ratner and J. W. Rogers Jr, Langmuir 16, 5644 (2000).
http://dx.doi.org/10.1021/la991513q
14.
14. B. Ingham, B. N. Illy, M. F. Toney, M. L. Howdyshell and M. P. Rayan, J. Phys. Chem. C 112, 14863 (2008).
http://dx.doi.org/10.1021/jp806184z
15.
15. Debabrata Pradhan and Kam Tong Leung, Langmuir 24, 9706 (2008).
http://dx.doi.org/10.1021/la8008943
16.
16. Pu Xian Gao, Chang Shi Lao, Yong Ding and Zhong Li Wang, Adv. Funct. Mat. 16, 53 (2006).
http://dx.doi.org/10.1002/adfm.200500301
17.
17. Waldo J. E. Beek, Lenneke H. Slooff, Martijn M. Wienk, Jan M. Kroon and Rene' A. J. Janssen, Adv. Funct. Mat. 15, 1703 (2005).
http://dx.doi.org/10.1002/adfm.200500201
18.
18. JCPDS International Center For Diffraction Data, Powder Diffraction File 01-076-0704, PA: Swarthmore, (1991).
19.
19. L. S Birks and H. Friedman, J. Appl. Phys. 17, 687 (1946).
http://dx.doi.org/10.1063/1.1707771
20.
20. R. Viswanatha, H. Amenitsch, D. D. Sarma, J. Am. Chem. Soc. 129, 4470 (2007).
http://dx.doi.org/10.1021/ja068161b
21.
21. M. S. Tokumoto, S. H. Pulcinelli, C. V. Santilli, A. F. J. Craievich, Non-Cryst. Solids 247, 176 (1999).
http://dx.doi.org/10.1016/S0022-3093(99)00059-9
22.
22. M. Bitenc, P. Podbršček, Z. Crnjak Orel, P. Dubček, S. Bernstorff, B. Orel, G. Dražič, to be submitted.
23.
23. Debabrata Pradhan, Mukul Kumar, Yoshinori Ando, and K. T. Leung, Appl. Materials. & Interfaces. 1, 789 (2009).
http://dx.doi.org/10.1021/am800220v
24.
24. M. K. Puchert, P. Y. Timbrell and R. N. Lam, J. Vac. Sci. Technol. A 14 (4), 2220 (1996).
http://dx.doi.org/10.1116/1.580050
25.
25. L. Zhang, D. Wett, R. Szargan and T. Chasse’, Surf. Int. Anal. 36, 1479 (2004).
http://dx.doi.org/10.1002/sia.1924
26.
26. A. B. Djurisic, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, Nanotechnology 18, 095702 (2007).
http://dx.doi.org/10.1088/0957-4484/18/9/095702
27.
27. Xiang Liu, Xiaohua Wu, Hui Cao, and R. P. H. Chang, J. Appl. Phys 95, 3141 (2004).
http://dx.doi.org/10.1063/1.1646440
28.
28. S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, Appl. Physics A 68, 447 (1999).
http://dx.doi.org/10.1007/s003390050921
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3633476
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Electrochemical cell used for ZnO growth. (1) electron holders with clamps, stainless steel, variable in height, (2) working electrode: substrate for ZnO growth. (3) counter electrode: graphite. (4) glass container. (5) rubber gasket. (6) inlet tubes and holes for gases and liquids. (7) screws for adjusting electrode older height. (8) aluminium stand.

Image of FIG. 2.

Click to view

FIG. 2.

SEM images of corals (a), flakes (b), nanorods (c), tetrahedral net (d), nanowalls (e). Scale bar in “i” figures is 2μm. Scale bar in “ii” figures is 200nm

Image of FIG. 3.

Click to view

FIG. 3.

AFM images of corals (a), nanowalls (b), nanorods (c)

Image of FIG. 4.

Click to view

FIG. 4.

XRD measurements of “corals” and “nanorods” samples shown in Fig 2. The diffraction peaks are sharp and strong and well indexed to the hexagonal phase of the wurtzite structure (space group P63mc), according to the values of standard XRD ZnO pattern found in the International Centre for Diffraction Database (ICDD)

Image of FIG. 5.

Click to view

FIG. 5.

Zn2p and O1s XPS spectra of “nanorods” (a, c) and “corals” (b, d). Both samples are annealed at 300°C, in situ, before XPS measurements. Both of them present two O1s components, but only the major one can be certainly assigned to the ZnO.

Tables

Generic image for table

Click to view

Table I.

Preparation conditions of samples shown in fig 2

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3633476
2011-08-24
2014-04-25

Abstract

One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnOnanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM) respectively, crystal structure by X-Ray Diffraction measurements (XRD) and ZnO stoichiometry by core level photoemission spectroscopy (XPS).

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3633476.html;jsessionid=1p1gw4ghgirbt.x-aip-live-02?itemId=/content/aip/journal/adva/1/3/10.1063/1.3633476&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electro-chemical deposition of zinc oxide nanostructures by using two electrodes
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3633476
10.1063/1.3633476
SEARCH_EXPAND_ITEM