1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Weak localization and percolation effects in annealed In2O3-ZnO thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3635375
1.
1. A. Kaijo: Proc. 3rd Int. Display workshop, vol. 2, (1996) p365.
2.
2. Y. S. Jung, J. Y. Seo, D. W. Lee, and D. Y. Jeon: Thin Solid Films 445 (2003) 63.
http://dx.doi.org/10.1016/j.tsf.2003.09.014
3.
3. P. T. Liu, Y. T. Chou and L. F. Teng, Appl. Phys. Lett. 94, 242101 (2009).
http://dx.doi.org/10.1063/1.3155507
4.
4. S. Lee and D. C Paine, Appl. Phys. Lett. 98, 262108 (2011)
http://dx.doi.org/10.1063/1.3605589
5.
5. Y. Shigesato and D. C. Pine, Thin Solid Films 238 44 (1994).
http://dx.doi.org/10.1016/0040-6090(94)90646-7
6.
6. M. Funaki, K. Makise, B. Shinozaki, K. Yano, F. Utsuno, K. Inoue, and H. Nakamura, J. Appl. Phys. 103 113701 (2008).
http://dx.doi.org/10.1063/1.2936316
7.
7. N. Ito, Y. Sato, P. K. Song, A. Kaijyo, K. Inoue, and Y. Shigesato, Thin Solid Films 496, 99 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.08.257
8.
8. D. C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, Thin Solid Films 516, 5894 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.10.081
9.
9. Y. S. Jung, J. Y. Seo, D. W. Lee, and D. Y. Jeon, Thin Solid Films 445 63 (2003).
http://dx.doi.org/10.1016/j.tsf.2003.09.014
10.
10. B. Yaglioglu, Y. J. Huang, H. Y. Yeom, and D. C. Paine, Thin solid Films 496, 89 (2006)
http://dx.doi.org/10.1016/j.tsf.2005.08.255
11.
11. N. Ito, Y. Sato, P. K. Song, A. Kaijyo, K. Inoue, and Y. Shigesato, Thin solid Films 496, 99 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.08.257
12.
12. K. Makise, K. Mitsuishi, N. Kokubo, T. Yamaguchi, B. Shinozaki, K. Yano, K. Inoue, and H. Nakamura, J.Appl.Phys. 108, 023704 (2010).
http://dx.doi.org/10.1063/1.3452375
13.
13. E. M. Hopper, Q. Zhu, J. H. Song, H. Peng, A. J. Freeman, and T. O. Mason J. Appl. Phys. 109, 013713(2011).
http://dx.doi.org/10.1063/1.3530733
14.
14. Juarez L. F. Da Silva, Yanfa Yan, and Su-Huai We, Phys. Rev. Lett. 100, 255501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.255501
15.
15. A. J. Leenheer, J. D. Perkins M. F. A. M. van Hest, J. J. Berry, R. P. O’Hayre and D. S. Ginley, Phys. Rev. B 77 115215 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115215
16.
16. V. L. Kuznetsov, D. H. O’Neil, M. Pepper, and P. P. Edwards, Appl. Phys. Lett. 97, 262117 (2010).
http://dx.doi.org/10.1063/1.3533382
17.
17. C. Marcel, N. Naghavi, G. Couturier, J. Salardenne, and J. M. Tarascon: J.Appl.Phys. 91,4291 (2002).
http://dx.doi.org/10.1063/1.1445496
18.
18. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog.Theor.Phys. 63, 707 (1980).
http://dx.doi.org/10.1143/PTP.63.707
19.
19. A. Palevski and G. Deutscher, Phys.Rev. B 34,431 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.431
20.
20. H. Fukuyama, J. Phys. Soc. Jpn. 53, 3299 (1984).
http://dx.doi.org/10.1143/JPSJ.53.3299
21.
21. W. E. Lawrence and A. B. Meador: Phys. Rev. B 18 1154 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.1154
22.
22. B. Shinozaki, K. Makise, Y. Shimane, H. Nakamura, and K. Inoue, J.Phys.Sos.Jpn. 76 074718 (2007).
http://dx.doi.org/10.1143/JPSJ.76.074718
23.
23. X. D. Liu, E. Y. Jiang, and D. X. Zhang, J.Appl.Phys. 104, 073711 (2008).
http://dx.doi.org/10.1063/1.2988901
24.
24. Y. W. Hsu, S. P. Chiu, A. S. Lien, and J. J. Lin, Phys.Rev.B 82, 195429 (2010)
http://dx.doi.org/10.1103/PhysRevB.82.195429
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3635375
Loading
/content/aip/journal/adva/1/3/10.1063/1.3635375
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3635375
2011-08-26
2014-12-20

Abstract

We have investigated the temperature T and magnetic fieldH dependences of the sheet resistance R of thin (In2O3)0.975-(ZnO)0.025films with different resistivities and carrier densities prepared by postannealing in air at various annealing temperatures T a. Regarding the magnetoconductance Δσ(H) ≡ 1/R (H) − 1/R (0) of films with large values of sheet resistance R , agreement between weak localization theory and the data cannot be obtained for any value of the localization length , where D and τin are the diffusion constant and inelastic scattering time, respectively. Taking account of the inhomogeneous morphology confirmed by Scanning Electron Microscopy(SEM) observation, we introduced the effective sheet resistance R eff given by R eff = α × R meas., where the strength of reduction factor α is less than unit, α ⩽ 1. Using a suitable value of α(T a), we successfully fitted the theory to data for Δσeff(H, T), regarding L in 2(T) as a fitting parameter in the region 2.0 K⩽T ⩽ 50 K. It was confirmed that the rate 1/τin(T) is given by the sum of the electron-electron and electron-phonon inelastic scattering rates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3635375.html;jsessionid=ftqd7r8abndoh.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3635375&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Weak localization and percolation effects in annealed In2O3-ZnO thin films
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3635375
10.1063/1.3635375
SEARCH_EXPAND_ITEM