Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Kaijo: Proc. 3rd Int. Display workshop, vol. 2, (1996) p365.
2. Y. S. Jung, J. Y. Seo, D. W. Lee, and D. Y. Jeon: Thin Solid Films 445 (2003) 63.
3. P. T. Liu, Y. T. Chou and L. F. Teng, Appl. Phys. Lett. 94, 242101 (2009).
4. S. Lee and D. C Paine, Appl. Phys. Lett. 98, 262108 (2011)
5. Y. Shigesato and D. C. Pine, Thin Solid Films 238 44 (1994).
6. M. Funaki, K. Makise, B. Shinozaki, K. Yano, F. Utsuno, K. Inoue, and H. Nakamura, J. Appl. Phys. 103 113701 (2008).
7. N. Ito, Y. Sato, P. K. Song, A. Kaijyo, K. Inoue, and Y. Shigesato, Thin Solid Films 496, 99 (2006).
8. D. C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, Thin Solid Films 516, 5894 (2008).
9. Y. S. Jung, J. Y. Seo, D. W. Lee, and D. Y. Jeon, Thin Solid Films 445 63 (2003).
10. B. Yaglioglu, Y. J. Huang, H. Y. Yeom, and D. C. Paine, Thin solid Films 496, 89 (2006)
11. N. Ito, Y. Sato, P. K. Song, A. Kaijyo, K. Inoue, and Y. Shigesato, Thin solid Films 496, 99 (2006).
12. K. Makise, K. Mitsuishi, N. Kokubo, T. Yamaguchi, B. Shinozaki, K. Yano, K. Inoue, and H. Nakamura, J.Appl.Phys. 108, 023704 (2010).
13. E. M. Hopper, Q. Zhu, J. H. Song, H. Peng, A. J. Freeman, and T. O. Mason J. Appl. Phys. 109, 013713(2011).
14. Juarez L. F. Da Silva, Yanfa Yan, and Su-Huai We, Phys. Rev. Lett. 100, 255501 (2008).
15. A. J. Leenheer, J. D. Perkins M. F. A. M. van Hest, J. J. Berry, R. P. O’Hayre and D. S. Ginley, Phys. Rev. B 77 115215 (2008).
16. V. L. Kuznetsov, D. H. O’Neil, M. Pepper, and P. P. Edwards, Appl. Phys. Lett. 97, 262117 (2010).
17. C. Marcel, N. Naghavi, G. Couturier, J. Salardenne, and J. M. Tarascon: J.Appl.Phys. 91,4291 (2002).
18. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog.Theor.Phys. 63, 707 (1980).
19. A. Palevski and G. Deutscher, Phys.Rev. B 34,431 (1986).
20. H. Fukuyama, J. Phys. Soc. Jpn. 53, 3299 (1984).
21. W. E. Lawrence and A. B. Meador: Phys. Rev. B 18 1154 (1978).
22. B. Shinozaki, K. Makise, Y. Shimane, H. Nakamura, and K. Inoue, J.Phys.Sos.Jpn. 76 074718 (2007).
23. X. D. Liu, E. Y. Jiang, and D. X. Zhang, J.Appl.Phys. 104, 073711 (2008).
24. Y. W. Hsu, S. P. Chiu, A. S. Lien, and J. J. Lin, Phys.Rev.B 82, 195429 (2010)

Data & Media loading...


Article metrics loading...



We have investigated the temperature T and magnetic fieldH dependences of the sheet resistance R of thin (In2O3)0.975-(ZnO)0.025films with different resistivities and carrier densities prepared by postannealing in air at various annealing temperatures T a. Regarding the magnetoconductance Δσ(H) ≡ 1/R (H) − 1/R (0) of films with large values of sheet resistance R , agreement between weak localization theory and the data cannot be obtained for any value of the localization length , where D and τin are the diffusion constant and inelastic scattering time, respectively. Taking account of the inhomogeneous morphology confirmed by Scanning Electron Microscopy(SEM) observation, we introduced the effective sheet resistance R eff given by R eff = α × R meas., where the strength of reduction factor α is less than unit, α ⩽ 1. Using a suitable value of α(T a), we successfully fitted the theory to data for Δσeff(H, T), regarding L in 2(T) as a fitting parameter in the region 2.0 K⩽T ⩽ 50 K. It was confirmed that the rate 1/τin(T) is given by the sum of the electron-electron and electron-phonon inelastic scattering rates.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd